Abstract
Uncertainty natural language processing has always been a research focus in the artificial intelligence field. In this paper, we continue to study the linguistic truth-valued concept lattice and apply it to the disease intelligent diagnosis by building an intelligent model to directly handle natural language. The theoretical bases of this model are the classical concept lattice and the lattice implication algebra with natural language. The model includes the case library formed by patients, attributes matching, and the matching degree calculation about the new patient. According to the characteristics of the patients, the disease attributes are firstly divided into intrinsic invariant attributes and extrinsic variable attributes. The calculation algorithm of the linguistic truth-valued formal concepts and the constructing algorithm of the linguistic truth-valued concept lattice based on the extrinsic attributes are proposed. And the disease bases of the different treatments for different patients with the same disease are established. Secondly, the matching algorithms of intrinsic attributes and extrinsic attributes are given, and all the linguistic truth-valued formal concepts that match the new patient’s extrinsic attributes are found. Lastly, by comparing the similarity between the new patients and the matching formal concepts, we calculate the best treatment options to realize the intelligent diagnosis of the disease.