Abstract
We introduce a property of forcing notions, called the anti-, which comes from Aronszajn trees. This property canonically defines a new chain condition stronger than the countable chain condition, which is called the property . In this paper, we investigate the property . For example, we show that a forcing notion with the property does not add random reals. We prove that it is consistent that every forcing notion with the property has precaliber 1 and for forcing notions with the property fails. This negatively answers a part of one of the classical problems about implications between fragments of