Abstract
Sets are multitudes which are also unities. It is surprising that the fact that multitudes are also unities leads to no contradictions: this is the main fact of mathematics.Kurt Gödel (Hao Wang,A Logical Journey: From Gödel to Philosophy)In what sense can something be at the same time one and many? The problem is familiar since Plato (for example,Republic524e). In recent times, Whitehead and Russell, inPrincipia Mathematica,have been struck by the difficulty of the problem: ‘If there is such an object as a class, it must be in some senseoneobject, yet it is only of classes that many can be predicated. Hence, if we admit classes as objects, we must suppose that the same object can be both one and many, which seems impossible.' It is, however, in Frege's great work,The Foundations of Arithmetic(henceforth,Grundlagen),that many see the final resolution of the old question: how can something be at the same time one and many?