Abstract
This article starts with the analysis of the existing electronic commerce system, summarizes its characteristics, and analyzes and solves its existing problems. Firstly, the characteristics of the relational database My Structured Query Language and the distributed database HBase are analyzed, their respective advantages and disadvantages are summarized, and the advantages and disadvantages of each are taken into account when storing data. My SQL is used to store structured business data in the system, while HBase is used to store unstructured data such as pictures. These two storage mechanisms together constitute a data storage subsystem. Secondly, considering the large amount of data in the e-commerce system and the complex calculation of the data mining algorithm, this paper uses MapReduce to realize the parallelization of the data mining algorithm and builds a Hadoop-based commodity recommendation subsystem on this basis. We use JavaEE technology to design a full-featured web mall system. Finally, based on the impact of cloud computing, mobile e-commerce is analyzed, including relevant theories, service mode, architecture, core technology, and the application in e-commerce, which can realize e-commerce precision marketing, find the optimal path of logistics, and take effective security measures to avoid transaction risks. This method can avoid the disadvantages of the traditional e-commerce, where large-scale data cannot be processed in a timely manner, realize the value of mining data behind, and realize the precision marketing of e-commerce enterprises.