Linear axiomatics of commutative product-free Lambek calculus

Studia Logica 49 (4):515 - 522 (1990)
  Copy   BIBTEX

Abstract

Axiomatics which do not employ rules of inference other than the cut rule are given for commutative product-free Lambek calculus in two variants: with and without the empty string. Unlike the former variant, the latter one turns out not to be finitely axiomatizable in that way.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,297

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
46 (#484,404)

6 months
6 (#879,768)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Cut-rule axiomatization of the syntactic calculus NL.Wojciech Zielonka - 2000 - Journal of Logic, Language and Information 9 (3):339-352.

Add more citations

References found in this work

Untersuchungen über das logische Schließen. I.Gerhard Gentzen - 1935 - Mathematische Zeitschrift 35:176–210.
Untersuchungen über das logische Schließen. II.Gerhard Gentzen - 1935 - Mathematische Zeitschrift 39:405–431.
Axiomatizability of Ajdukiewicz-Lambek Calculus by Means of Cancellation Schemes.Wojciech Zielonka - 1981 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 27 (13-14):215-224.
The logic of types.Wojciech Buszkowski - 1987 - In Jan T. J. Srzednicki (ed.), Initiatives in logic. Boston: M. Nijhoff. pp. 180--206.

View all 7 references / Add more references