Results for ' reverse mathematics'

957 found
Order:
  1.  12
    Reverse mathematics: proofs from the inside out.John Stillwell - 2018 - Princeton: Princeton University Press.
    This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  70
    Reverse Mathematics and Completeness Theorems for Intuitionistic Logic.Takeshi Yamazaki - 2001 - Notre Dame Journal of Formal Logic 42 (3):143-148.
    In this paper, we investigate the logical strength of completeness theorems for intuitionistic logic along the program of reverse mathematics. Among others we show that is equivalent over to the strong completeness theorem for intuitionistic logic: any countable theory of intuitionistic predicate logic can be characterized by a single Kripke model.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  3.  46
    Reverse Mathematics and Uniformity in Proofs without Excluded Middle.Jeffry L. Hirst & Carl Mummert - 2011 - Notre Dame Journal of Formal Logic 52 (2):149-162.
    We show that when certain statements are provable in subsystems of constructive analysis using intuitionistic predicate calculus, related sequential statements are provable in weak classical subsystems. In particular, if a $\Pi^1_2$ sentence of a certain form is provable using E-HA ${}^\omega$ along with the axiom of choice and an independence of premise principle, the sequential form of the statement is provable in the classical system RCA. We obtain this and similar results using applications of modified realizability and the Dialectica interpretation. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  4. Reverse Mathematics and Fully Ordered Groups.Reed Solomon - 1998 - Notre Dame Journal of Formal Logic 39 (2):157-189.
    We study theorems of ordered groups from the perspective of reverse mathematics. We show that suffices to prove Hölder's Theorem and give equivalences of both (the orderability of torsion free nilpotent groups and direct products, the classical semigroup conditions for orderability) and (the existence of induced partial orders in quotient groups, the existence of the center, and the existence of the strong divisible closure).
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  5.  36
    Reverse Mathematics and Grundy colorings of graphs.James H. Schmerl - 2010 - Mathematical Logic Quarterly 56 (5):541-548.
    The relationship of Grundy and chromatic numbers of graphs in the context of Reverse Mathematics is investi-gated.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  33
    Reverse Mathematics.Benedict Eastaugh - 2024 - The Stanford Encyclopedia of Philosophy.
    Reverse mathematics is a program in mathematical logic that seeks to give precise answers to the question of which axioms are necessary in order to prove theorems of "ordinary mathematics": roughly speaking, those concerning structures that are either themselves countable, or which can be represented by countable "codes". This includes many fundamental theorems of real, complex, and functional analysis, countable algebra, countable infinitary combinatorics, descriptive set theory, and mathematical logic. This entry aims to give the reader a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  27
    Reverse Mathematics and the Coloring Number of Graphs.Matthew Jura - 2016 - Notre Dame Journal of Formal Logic 57 (1):27-44.
    We use methods of reverse mathematics to analyze the proof theoretic strength of a theorem involving the notion of coloring number. Classically, the coloring number of a graph $G=$ is the least cardinal $\kappa$ such that there is a well-ordering of $V$ for which below any vertex in $V$ there are fewer than $\kappa$ many vertices connected to it by $E$. We will study a theorem due to Komjáth and Milner, stating that if a graph is the union (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  48
    Reverse mathematics and a Ramsey-type König's Lemma.Stephen Flood - 2012 - Journal of Symbolic Logic 77 (4):1272-1280.
    In this paper, we propose a weak regularity principle which is similar to both weak König's lemma and Ramsey's theorem. We begin by studying the computational strength of this principle in the context of reverse mathematics. We then analyze different ways of generalizing this principle.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  9. Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10. Reverse mathematics and π21 comprehension.Carl Mummert & Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (4):526-533.
    We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π2 1 comprehension. An MF space is defined to be a topological space of the form MF(P) with the topology generated by $\lbrace N_p \mid p \in P \rbrace$ . Here P is a poset, MF(P) is the set of maximal filters on P, and $N_p = \lbrace F \in MF(P) \mid p \in F \rbrace$ . If the poset P (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  11.  53
    Reverse Mathematics and Recursive Graph Theory.William Gasarch & Jeffry L. Hirst - 1998 - Mathematical Logic Quarterly 44 (4):465-473.
    We examine a number of results of infinite combinatorics using the techniques of reverse mathematics. Our results are inspired by similar results in recursive combinatorics. Theorems included concern colorings of graphs and bounded graphs, Euler paths, and Hamilton paths.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  12.  43
    Reverse mathematics of separably closed sets.Jeffry L. Hirst - 2006 - Archive for Mathematical Logic 45 (1):1-2.
    This paper contains a corrected proof that the statement “every non-empty closed subset of a compact complete separable metric space is separably closed” implies the arithmetical comprehension axiom of reverse mathematics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  41
    Splittings and Disjunctions in Reverse Mathematics.Sam Sanders - 2020 - Notre Dame Journal of Formal Logic 61 (1):51-74.
    Reverse mathematics is a program in the foundations of mathematics founded by Friedman and developed extensively by Simpson and others. The aim of RM is to find the minimal axioms needed to prove a theorem of ordinary, that is, non-set-theoretic, mathematics. As suggested by the title, this paper deals with two RM-phenomena, namely, splittings and disjunctions. As to splittings, there are some examples in RM of theorems A, B, C such that A↔, that is, A can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  14.  28
    Reverse mathematics of mf spaces.Carl Mummert - 2006 - Journal of Mathematical Logic 6 (2):203-232.
    This paper gives a formalization of general topology in second-order arithmetic using countably based MF spaces. This formalization is used to study the reverse mathematics of general topology. For each poset P we let MF denote the set of maximal filters on P endowed with the topology generated by {Np | p ∈ P}, where Np = {F ∈ MF | p ∈ F}. We define a countably based MF space to be a space of the form MF (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  15.  83
    Reverse mathematics, computability, and partitions of trees.Jennifer Chubb, Jeffry L. Hirst & Timothy H. McNicholl - 2009 - Journal of Symbolic Logic 74 (1):201-215.
    We examine the reverse mathematics and computability theory of a form of Ramsey's theorem in which the linear n-tuples of a binary tree are colored.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  16.  34
    Reverse mathematics and infinite traceable graphs.Peter Cholak, David Galvin & Reed Solomon - 2012 - Mathematical Logic Quarterly 58 (1-2):18-28.
    We analyze three applications of Ramsey’s Theorem for 4-tuples to infinite traceable graphs and finitely generated infinite lattices using the tools of reverse mathematics. The applications in graph theory are shown to be equivalent to Ramsey’s Theorem while the application in lattice theory is shown to be provable in the weaker system RCA0.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17.  34
    Reverse mathematics of prime factorization of ordinals.Jeffry L. Hirst - 1999 - Archive for Mathematical Logic 38 (3):195-201.
    One of the earliest applications of Cantor's Normal Form Theorem is Jacobstahl's proof of the existence of prime factorizations of ordinals. Applying the techniques of reverse mathematics, we show that the full strength of the Normal Form Theorem is used in this proof.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  40
    Reverse mathematics, well-quasi-orders, and Noetherian spaces.Emanuele Frittaion, Matthew Hendtlass, Alberto Marcone, Paul Shafer & Jeroen Van der Meeren - 2016 - Archive for Mathematical Logic 55 (3):431-459.
    A quasi-order Q induces two natural quasi-orders on $${\mathcal{P}(Q)}$$, but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq (Proceedings of the 22nd Annual IEEE Symposium 4 on Logic in Computer Science (LICS’07), pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on $${\mathcal{P}(Q)}$$ preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on $${\mathcal{P}(Q)}$$ are Noetherian, which means that they contain no (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  39
    Interval Orders and Reverse Mathematics.Alberto Marcone - 2007 - Notre Dame Journal of Formal Logic 48 (3):425-448.
    We study the reverse mathematics of interval orders. We establish the logical strength of the implications among various definitions of the notion of interval order. We also consider the strength of different versions of the characterization theorem for interval orders: a partial order is an interval order if and only if it does not contain 2 \oplus 2. We also study proper interval orders and their characterization theorem: a partial order is a proper interval order if and only (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  31
    Reverse Mathematics of Topology: Dimension, Paracompactness, and Splittings.Sam Sanders - 2020 - Notre Dame Journal of Formal Logic 61 (4):537-559.
    Reverse mathematics is a program in the foundations of mathematics founded by Friedman and developed extensively by Simpson and others. The aim of RM is to find the minimal axioms needed to prove a theorem of ordinary, that is, non-set-theoretic, mathematics. As suggested by the title, this paper deals with the study of the topological notions of dimension and paracompactness, inside Kohlenbach’s higher-order RM. As to splittings, there are some examples in RM of theorems A, B, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  70
    Reverse mathematics and Peano categoricity.Stephen G. Simpson & Keita Yokoyama - 2013 - Annals of Pure and Applied Logic 164 (3):284-293.
    We investigate the reverse-mathematical status of several theorems to the effect that the natural number system is second-order categorical. One of our results is as follows. Define a system to be a triple A,i,f such that A is a set and i∈A and f:A→A. A subset X⊆A is said to be inductive if i∈X and ∀a ∈X). The system A,i,f is said to be inductive if the only inductive subset of A is A itself. Define a Peano system to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  22.  24
    Filling cages. Reverse mathematics and combinatorial principles.Marta Fiori Carones - 2020 - Bulletin of Symbolic Logic 26 (3-4):300-300.
    In the thesis some combinatorial statements are analysed from the reverse mathematics point of view. Reverse mathematics is a research program, which dates back to the Seventies, interested in finding the exact strength, measured in terms of set-existence axioms, of theorems from ordinary non set-theoretic mathematics. After a brief introduction to the subject, an on-line (incremental) algorithm to transitively reorient infinite pseudo-transitive oriented graphs is defined. This implies that a theorem of Ghouila-Houri is provable in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  22
    Reverse mathematics and semisimple rings.Huishan Wu - 2022 - Archive for Mathematical Logic 61 (5):769-793.
    This paper studies various equivalent characterizations of left semisimple rings from the standpoint of reverse mathematics. We first show that \ is equivalent to the statement that any left module over a left semisimple ring is semisimple over \. We then study characterizations of left semisimple rings in terms of projective modules as well as injective modules, and obtain the following results: \ is equivalent to the statement that any left module over a left semisimple ring is projective (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24. Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
    This paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  25.  52
    Reverse mathematics and the equivalence of definitions for well and better quasi-orders.Peter Cholak, Alberto Marcone & Reed Solomon - 2004 - Journal of Symbolic Logic 69 (3):683-712.
  26.  85
    Reverse mathematics and well-ordering principles: A pilot study.Bahareh Afshari & Michael Rathjen - 2009 - Annals of Pure and Applied Logic 160 (3):231-237.
    The larger project broached here is to look at the generally sentence “if X is well-ordered then f is well-ordered”, where f is a standard proof-theoretic function from ordinals to ordinals. It has turned out that a statement of this form is often equivalent to the existence of countable coded ω-models for a particular theory Tf whose consistency can be proved by means of a cut elimination theorem in infinitary logic which crucially involves the function f. To illustrate this theme, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  27.  30
    Reverse mathematics and well-ordering principles.Michael Rathjen & Andreas Weiermann - 2011 - In S. B. Cooper & Andrea Sorbi (eds.), Computability in Context: Computation and Logic in the Real World. World Scientific.
  28.  26
    The reverse mathematics of theorems of Jordan and lebesgue.André Nies, Marcus A. Triplett & Keita Yokoyama - 2021 - Journal of Symbolic Logic 86 (4):1657-1675.
    The Jordan decomposition theorem states that every function $f \colon \, [0,1] \to \mathbb {R}$ of bounded variation can be written as the difference of two non-decreasing functions. Combining this fact with a result of Lebesgue, every function of bounded variation is differentiable almost everywhere in the sense of Lebesgue measure. We analyze the strength of these theorems in the setting of reverse mathematics. Over $\mathsf {RCA}_{0}$, a stronger version of Jordan’s result where all functions are continuous is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  83
    Reverse Mathematics in Bishop’s Constructive Mathematics.Hajime Ishihara - 2006 - Philosophia Scientiae:43-59.
    We will overview the results in an informal approach to constructive reverse mathematics, that is reverse mathematics in Bishop’s constructive mathematics, especially focusing on compactness properties and continuous properties.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  30.  33
    Reverse Mathematics and Ordinal Multiplication.Jeffry L. Hirst - 1998 - Mathematical Logic Quarterly 44 (4):459-464.
    This paper uses the framework of reverse mathematics to analyze the proof theoretic content of several statements concerning multiplication of countable well-orderings. In particular, a division algorithm for ordinal arithmetic is shown to be equivalent to the subsystem ATR0.
    Direct download  
     
    Export citation  
     
    Bookmark  
  31. Strict reverse mathematics draft.Harvey M. Friedman - unknown
    NOTE: This is an expanded version of my lecture at the special session on reverse mathematics, delivered at the Special Session on Reverse Mathematics held at the Atlanta AMS meeting, on January 6, 2005.
     
    Export citation  
     
    Bookmark  
  32.  16
    Reverse mathematics of first-order theories with finitely many models.David R. Belanger - 2014 - Journal of Symbolic Logic 79 (3):955-984.
  33.  32
    Reverse Mathematics and Ramsey Properties of Partial Orderings.Jared Corduan & Marcia Groszek - 2016 - Notre Dame Journal of Formal Logic 57 (1):1-25.
    A partial ordering $\mathbb{P}$ is $n$-Ramsey if, for every coloring of $n$-element chains from $\mathbb{P}$ in finitely many colors, $\mathbb{P}$ has a homogeneous subordering isomorphic to $\mathbb{P}$. In their paper on Ramsey properties of the complete binary tree, Chubb, Hirst, and McNicholl ask about Ramsey properties of other partial orderings. They also ask whether there is some Ramsey property for pairs equivalent to $\mathit{ACA}_{0}$ over $\mathit{RCA}_{0}$. A characterization theorem for finite-level partial orderings with Ramsey properties has been proven by the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34. Finite reverse mathematics.Harvey Friedman - manuscript
    We present some formal systems in the language of linearly ordered rings with finite sets whose nonlogical axioms are strictly mathematical, which correspond to polynomially bounded arithmetic. With an additional strictly mathematical axiom, the systems correspond to exponentially bounded arithmetic.
     
    Export citation  
     
    Bookmark  
  35.  29
    Pincherle's theorem in reverse mathematics and computability theory.Dag Normann & Sam Sanders - 2020 - Annals of Pure and Applied Logic 171 (5):102788.
    We study the logical and computational properties of basic theorems of uncountable mathematics, in particular Pincherle's theorem, published in 1882. This theorem states that a locally bounded function is bounded on certain domains, i.e. one of the first ‘local-to-global’ principles. It is well-known that such principles in analysis are intimately connected to (open-cover) compactness, but we nonetheless exhibit fundamental differences between compactness and Pincherle's theorem. For instance, the main question of Reverse Mathematics, namely which set existence axioms (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  36. Strict reverse mathematics.Harvey M. Friedman - unknown
    An extreme kind of logic skeptic claims that "the present formal systems used for the foundations of mathematics are artificially strong, thereby causing unnecessary headaches such as the Gödel incompleteness phenomena". The skeptic continues by claiming that "logician's systems always contain overly general assertions, and/or assertions about overly general notions, that are not used in any significant way in normal mathematics. For example, induction for all statements, or even all statements of certain restricted forms, is far too general (...)
     
    Export citation  
     
    Bookmark  
  37.  37
    Reverse mathematics and ordinal exponentiation.Jeffry L. Hirst - 1994 - Annals of Pure and Applied Logic 66 (1):1-18.
    Simpson has claimed that “ATR0 is the weakest set of axioms which permits the development of a decent theory of countable ordinals” [8]. This paper provides empirical support for Simpson's claim. In particular, Cantor's Normal Form Theorem and Sherman's Inequality for countable well-orderings are both equivalent to ATR0. The proofs of these results require a substantial development of ordinal exponentiation and a strengthening of the comparability result in [3].
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  38.  62
    Reverse mathematics and Ramsey's property for trees.Jared Corduan, Marcia J. Groszek & Joseph R. Mileti - 2010 - Journal of Symbolic Logic 75 (3):945-954.
    We show, relative to the base theory RCA₀: A nontrivial tree satisfies Ramsey's Theorem only if it is biembeddable with the complete binary tree. There is a class of partial orderings for which Ramsey's Theorem for pairs is equivalent to ACA₀. Ramsey's Theorem for singletons for the complete binary tree is stronger than $B\sum_{2}^{0}$ , hence stronger than Ramsey's Theorem for singletons for ω. These results lead to extensions of results, or answers to questions, of Chubb, Hirst, and McNicholl [3].
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  39.  23
    The Biggest Five of Reverse Mathematics.Dag Normann & Sam Sanders - forthcoming - Journal of Mathematical Logic.
    The aim of Reverse Mathematics (RM for short) is to find the minimal axioms needed to prove a given theorem of ordinary mathematics. These minimal axioms are almost always equivalent to the theorem, working over the base theory of RM, a weak system of computable mathematics. The Big Five phenomenon of RM is the observation that a large number of theorems from ordinary mathematics are either provable in the base theory or equivalent to one of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  27
    Reverse mathematics and marriage problems with unique solutions.Jeffry L. Hirst & Noah A. Hughes - 2015 - Archive for Mathematical Logic 54 (1-2):49-57.
    We analyze the logical strength of theorems on marriage problems with unique solutions using the techniques of reverse mathematics, restricting our attention to problems in which each boy knows only finitely many girls. In general, these marriage theorems assert that if a marriage problem has a unique solution then there is a way to enumerate the boys so that for every m, the first m boys know exactly m girls. The strength of each theorem depends on whether the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  23
    Reverse mathematics and Isbell's zig‐zag theorem.Takashi Sato - 2014 - Mathematical Logic Quarterly 60 (4-5):348-353.
    The paper explores the logical strength of Isbell's zig‐zag theorem using the framework of reverse mathematics. Working in, we show that is equivalent to Isbell's zig‐zag theorem for countable monoids: If B is a monoid extension of A, then is dominated by A if and only if b has a zig‐zag over A. Our proof of Isbell's zig‐zag theorem avoids use of strong comprehension axioms common in traditional proofs. We also analyze the strength of theorems concerning binary relations.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  23
    Ultrafilters in reverse mathematics.Henry Towsner - 2014 - Journal of Mathematical Logic 14 (1):1450001.
    We extend theories of reverse mathematics by a non-principal ultrafilter, and show that these are conservative extensions of the usual theories ACA0, ATR0, and [Formula: see text].
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43.  6
    THE REVERSE MATHEMATICS OF ${\mathsf {CAC\ FOR\ TREES}}$.Julien Cervelle, William Gaudelier & Ludovic Patey - 2024 - Journal of Symbolic Logic 89 (3):1189-1211.
    ${\mathsf {CAC\ for\ trees}}$ is the statement asserting that any infinite subtree of $\mathbb {N}^{<\mathbb {N}}$ has an infinite path or an infinite antichain. In this paper, we study the computational strength of this theorem from a reverse mathematical viewpoint. We prove that ${\mathsf {CAC\ for\ trees}}$ is robust, that is, there exist several characterizations, some of which already appear in the literature, namely, the statement $\mathsf {SHER}$ introduced by Dorais et al. [8], and the statement $\mathsf {TAC}+\mathsf {B}\Sigma (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  29
    Reverse Mathematics and parameter-free Transfer.Benno van den Berg & Sam Sanders - 2019 - Annals of Pure and Applied Logic 170 (3):273-296.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  21
    Big in Reverse Mathematics: The Uncountability of the Reals.Sam Sanders - forthcoming - Journal of Symbolic Logic:1-34.
    The uncountability of$\mathbb {R}$is one of its most basic properties, known far outside of mathematics. Cantor’s 1874 proof of the uncountability of$\mathbb {R}$even appears in the very first paper on set theory, i.e., a historical milestone. In this paper, we study the uncountability of${\mathbb R}$in Kohlenbach’shigher-orderReverse Mathematics (RM for short), in the guise of the following principle:$$\begin{align*}\mathit{for \ a \ countable \ set } \ A\subset \mathbb{R}, \mathit{\ there \ exists } \ y\in \mathbb{R}\setminus A. \end{align*}$$An important conceptual (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  20
    The reverse mathematics of non-decreasing subsequences.Ludovic Patey - 2017 - Archive for Mathematical Logic 56 (5-6):491-506.
    Every function over the natural numbers has an infinite subdomain on which the function is non-decreasing. Motivated by a question of Dzhafarov and Schweber, we study the reverse mathematics of variants of this statement. It turns out that this statement restricted to computably bounded functions is computationally weak and does not imply the existence of the halting set. On the other hand, we prove that it is not a consequence of Ramsey’s theorem for pairs. This statement can therefore (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  47.  27
    Reverse mathematics of the finite downwards closed subsets of ordered by inclusion and adjacent Ramsey for fixed dimension.Florian Pelupessy - 2018 - Mathematical Logic Quarterly 64 (3):178-182.
    We show that the well partial orderedness of the finite downwards closed subsets of, ordered by inclusion, is equivalent to the well foundedness of the ordinal. Since we use Friedman's adjacent Ramsey theorem for fixed dimensions in the upper bound, we also give a treatment of the reverse mathematical status of that theorem.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  48.  31
    Erna and Friedman's reverse mathematics.Sam Sanders - 2011 - Journal of Symbolic Logic 76 (2):637 - 664.
    Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed around 1995 by Patrick Suppes and Richard Sommer. Recently, the author showed the consistency of ERNA with several transfer principles and proved results of nonstandard analysis in the resulting theories (see [12] and [13]). Here, we show that Weak König's lemma (WKL) and many of its equivalent formulations over RCA₀ from Reverse Mathematics (see [21] and [22]) can be (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  49.  6
    Approximation Theorems Throughout Reverse Mathematics.Sam Sanders - forthcoming - Journal of Symbolic Logic:1-32.
    Reverse Mathematics (RM) is a program in the foundations of mathematics where the aim is to find the minimal axioms needed to prove a given theorem of ordinary mathematics. Generally, the minimal axioms are equivalent to the theorem at hand, assuming a weak logical system called the base theory. Moreover, many theorems are either provable in the base theory or equivalent to one of four logical systems, together called the Big Five. For instance, the Weierstrass approximation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50. Die Reverse Mathematics und ihre philosophische Relevanz.Krzysztof Wójtowicz - 2001 - Philosophia Naturalis 38 (1):121-144.
    No categories
     
    Export citation  
     
    Bookmark  
1 — 50 / 957