Results for ' ultrafilter number'

942 found
Order:
  1.  18
    A small ultrafilter number at smaller cardinals.Dilip Raghavan & Saharon Shelah - 2020 - Archive for Mathematical Logic 59 (3-4):325-334.
    It is proved to be consistent relative to a measurable cardinal that there is a uniform ultrafilter on the real numbers which is generated by fewer than the maximum possible number of sets. It is also shown to be consistent relative to a supercompact cardinal that there is a uniform ultrafilter on \ which is generated by fewer than \ sets.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  17
    Ideal independent families and the ultrafilter number.Jonathan Cancino, Osvaldo Guzmán & Arnold W. Miller - 2021 - Journal of Symbolic Logic 86 (1):128-136.
    We say that $\mathcal {I}$ is an ideal independent family if no element of ${\mathcal {I}}$ is a subset mod finite of a union of finitely many other elements of ${\mathcal {I}}.$ We will show that the minimum size of a maximal ideal independent family is consistently bigger than both $\mathfrak {d}$ and $\mathfrak {u},$ this answers a question of Donald Monk.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  27
    Coanalytic ultrafilter bases.Jonathan Schilhan - 2022 - Archive for Mathematical Logic 61 (3-4):567-581.
    We study the definability of ultrafilter bases on \ in the sense of descriptive set theory. As a main result we show that there is no coanalytic base for a Ramsey ultrafilter, while in L we can construct \ P-point and Q-point bases. We also show that the existence of a \ ultrafilter is equivalent to that of a \ ultrafilter base, for \. Moreover we introduce a Borel version of the classical ultrafilter number (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  25
    Ramsey ultrafilters and the reaping number—con(r.M. Goldstern & S. Shelah - 1990 - Annals of Pure and Applied Logic 49 (2):121-142.
    We show that it is consistent that the reaping number r is less than u , the size of the smallest base for an ultrafilter. To show that our forcing preserves certain ultrafilters, we prove a general partition theorem involving Ramsey ideals.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  5.  16
    Ramsey degrees of ultrafilters, pseudointersection numbers, and the tools of topological Ramsey spaces.Natasha Dobrinen & Sonia Navarro Flores - 2022 - Archive for Mathematical Logic 61 (7):1053-1090.
    This paper investigates properties of \(\sigma \) -closed forcings which generate ultrafilters satisfying weak partition relations. The Ramsey degree of an ultrafilter \({\mathcal {U}}\) for _n_-tuples, denoted \(t({\mathcal {U}},n)\), is the smallest number _t_ such that given any \(l\ge 2\) and coloring \(c:[\omega ]^n\rightarrow l\), there is a member \(X\in {\mathcal {U}}\) such that the restriction of _c_ to \([X]^n\) has no more than _t_ colors. Many well-known \(\sigma \) -closed forcings are known to generate ultrafilters with finite (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6.  80
    Ultrafilters on the natural numbers.Christopher Barney - 2003 - Journal of Symbolic Logic 68 (3):764-784.
    We study the problem of existence and generic existence of ultrafilters on ω. We prove a conjecture of $J\ddot{o}rg$ Brendle's showing that there is an ultrafilter that is countably closed but is not an ordinal ultrafilter under CH. We also show that Canjar's previous partial characterization of the generic existence of Q-points is the best that can be done. More simply put, there is no normal cardinal invariant equality that fully characterizes the generic existence of Q-points. We then (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  22
    Special ultrafilters and cofinal subsets of $$({}^omega omega, <^*)$$.Peter Nyikos - 2020 - Archive for Mathematical Logic 59 (7-8):1009-1026.
    The interplay between ultrafilters and unbounded subsets of \ with the order \ of strict eventual domination is studied. Among the tools are special kinds of non-principal ultrafilters on \. These include simple P-points; that is, ultrafilters with a base that is well-ordered with respect to the reverse of the order \ of almost inclusion. It is shown that the cofinality of such a base must be either \, the least cardinality of \-unbounded set, or \, the least cardinality of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  35
    | ˜ -Divisibility of Ultrafilters.Boris Šobot - 2021 - Annals of Pure and Applied Logic 172 (1):102857.
    We further investigate a divisibility relation on the set of BN ultrafilters on the set of natural numbers. We single out prime ultrafilters (divisible only by 1 and themselves) and establish a hierarchy in which a position of every ultrafilter depends on the set of prime ultrafilters it is divisible by. We also construct ultrafilters with many immediate successors in this hierarchy and find positions of products of ultrafilters.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  36
    Maximal Towers and Ultrafilter Bases in Computability Theory.Steffen Lempp, Joseph S. Miller, André Nies & Mariya I. Soskova - 2023 - Journal of Symbolic Logic 88 (3):1170-1190.
    The tower number ${\mathfrak t}$ and the ultrafilter number $\mathfrak {u}$ are cardinal characteristics from set theory. They are based on combinatorial properties of classes of subsets of $\omega $ and the almost inclusion relation $\subseteq ^*$ between such subsets. We consider analogs of these cardinal characteristics in computability theory.We say that a sequence $(G_n)_{n \in {\mathbb N}}$ of computable sets is a tower if $G_0 = {\mathbb N}$, $G_{n+1} \subseteq ^* G_n$, and $G_n\smallsetminus G_{n+1}$ is infinite (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  25
    Ideals and Their Generic Ultrafilters.David Chodounský & Jindřich Zapletal - 2020 - Notre Dame Journal of Formal Logic 61 (3):403-408.
    Let I be an F σ -ideal on natural numbers. We characterize the ultrafilters which are generic over the model L for the poset of I -positive sets of natural numbers ordered by inclusion.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  23
    (1 other version)On the number of ultrafilters of an infinite boolean algebra.D. C. Makinson - 1969 - Mathematical Logic Quarterly 15 (7‐12):121-122.
  12.  27
    Combinatorics of ultrafilters on Cohen and random algebras.Jörg Brendle & Francesco Parente - 2022 - Journal of Symbolic Logic 87 (1):109-126.
    We investigate the structure of ultrafilters on Boolean algebras in the framework of Tukey reducibility. In particular, this paper provides several techniques to construct ultrafilters which are not Tukey maximal. Furthermore, we connect this analysis with a cardinal invariant of Boolean algebras, the ultrafilter number, and prove consistency results concerning its possible values on Cohen and random algebras.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  25
    The existence of free ultrafilters on ω does not imply the extension of filters on ω to ultrafilters.Eric J. Hall, Kyriakos Keremedis & Eleftherios Tachtsis - 2013 - Mathematical Logic Quarterly 59 (4-5):258-267.
    Let X be an infinite set and let and denote the propositions “every filter on X can be extended to an ultrafilter” and “X has a free ultrafilter”, respectively. We denote by the Stone space of the Boolean algebra of all subsets of X. We show: For every well‐ordered cardinal number ℵ, (ℵ) iff (2ℵ). iff “ is a continuous image of ” iff “ has a free open ultrafilter ” iff “every countably infinite subset of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  14.  32
    On the Spectrum of Characters of Ultrafilters.Shimon Garti, Menachem Magidor & Saharon Shelah - 2018 - Notre Dame Journal of Formal Logic 59 (3):371-379.
    We show that the character spectrum Spχ(λ) (for a singular cardinal λ of countable cofinality) may include any prescribed set of regular cardinals between λ and 2λ.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  15.  90
    Sets constructible from sequences of ultrafilters.William J. Mitchell - 1974 - Journal of Symbolic Logic 39 (1):57-66.
    In [4], Kunen used iterated ultrapowers to show that ifUis a normalκ-complete nontrivial ultrafilter on a cardinalκthenL[U], the class of sets constructive fromU, has only the ultrafilterU∩L[U] and this ultrafilter depends only onκ. In this paper we extend Kunen's methods to arbitrary sequencesUof ultrafilters and obtain generalizations of these results. In particular we answer Problem 1 of Kunen and Paris [5] which asks whether the number of ultrafilters onκcan be intermediate between 1 and 22κ. If there is (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  16.  26
    Ramsey algebras and the existence of idempotent ultrafilters.Wen Chean Teh - 2016 - Archive for Mathematical Logic 55 (3-4):475-491.
    Hindman’s Theorem says that every finite coloring of the positive natural numbers has a monochromatic set of finite sums. Ramsey algebras, recently introduced, are structures that satisfy an analogue of Hindman’s Theorem. It is an open problem posed by Carlson whether every Ramsey algebra has an idempotent ultrafilter. This paper develops a general framework to study idempotent ultrafilters. Under certain countable setting, the main result roughly says that every nondegenerate Ramsey algebra has a nonprincipal idempotent ultrafilter in some (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17.  99
    The Rudin-Blass ordering of ultrafilters.Claude Laflamme & Jian-Ping Zhu - 1998 - Journal of Symbolic Logic 63 (2):584-592.
    We discuss the finite-to-one Rudin-Keisler ordering of ultrafilters on the natural numbers, which we baptize the Rudin-Blass ordering in honour of Professor Andreas Blass who worked extensively in the area. We develop and summarize many of its properties in relation to its bounding and dominating numbers, directedness, and provide applications to continuum theory. In particular, we prove in ZFC alone that there exists an ultrafilter with no Q-point below in the Rudin-Blass ordering.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  18.  35
    Andreas Blass and Saharon Shelah. Ultrafilters with small generating sets. Israel journal of mathematics, vol. 65 , pp. 259–271. - Andreas Blass and Saharon Shelah. There may be simple - and -points and the Rudin–Keisler ordering may be downward directed. Annals of pure and applied logic, vol. 33 , pp. 213–243. - Andreas Blass. Near coherence of filters. II: Applications to operator ideals, the Stone–Čech remainder of a half-line, order ideals of sequences, and the slenderness of groups. Transactions of the American Mathematical Society, vol. 300 , pp. 557–581. - Andreas Blass and Saharon Shelah. Near coherence of filters III: a simplified consistency proof. Notre Dame journal of formal logic, vol. 30 , pp. 530–538. - Andreas Blass and Claude Laflamme. Consistency results about filters and the number of inequivalent growth types. The journal of symbolic logic, vol. 54 , pp. 50–56. - Andreas Blass. Applications of superperfect forcing and its relatives. Set theory and its applications. [REVIEW]Peter J. Nyikos - 1992 - Journal of Symbolic Logic 57 (2):763-766.
  19.  28
    Euclidean Numbers and Numerosities.Vieri Benci & Lorenzo Luperi Baglini - 2024 - Journal of Symbolic Logic 89 (1):112-146.
    Several different versions of the theory of numerosities have been introduced in the literature. Here, we unify these approaches in a consistent frame through the notion of set of labels, relating numerosities with the Kiesler field of Euclidean numbers. This approach allows us to easily introduce, by means of numerosities, ordinals and their natural operations, as well as the Lebesgue measure as a counting measure on the reals.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  25
    Bounding and Dominating Number of Families of Functions on ω.Claude Laflamme - 1994 - Mathematical Logic Quarterly 40 (2):207-223.
    We pursue the study of families of functions on the natural numbers, with emphasis here on the bounded families. The situation being more complicated than the unbounded case, we attack the problem by classifying the families according to their bounding and dominating numbers, the traditional scheme for gaps. Many open questions remain.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  34
    A dichotomy for the number of ultrapowers.Ilijas Farah & Saharon Shelah - 2010 - Journal of Mathematical Logic 10 (1):45-81.
    We prove a strong dichotomy for the number of ultrapowers of a given model of cardinality ≤ 2ℵ0 associated with nonprincipal ultrafilters on ℕ. They are either all isomorphic, or else there are 22ℵ0 many nonisomorphic ultrapowers. We prove the analogous result for metric structures, including C*-algebras and II1 factors, as well as their relative commutants and include several applications. We also show that the CAF001-algebra [Formula: see text] always has nonisomorphic relative commutants in its ultrapowers associated with nonprincipal (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  32
    Yet Another Ideal Version of the Bounding Number.Rafał Filipów & Adam Kwela - 2022 - Journal of Symbolic Logic 87 (3):1065-1092.
    Let $\mathcal {I}$ be an ideal on $\omega $. For $f,\,g\in \omega ^{\omega }$ we write $f \leq _{\mathcal {I}} g$ if $f(n) \leq g(n)$ for all $n\in \omega \setminus A$ with some $A\in \mathcal {I}$. Moreover, we denote $\mathcal {D}_{\mathcal {I}}=\{f\in \omega ^{\omega }: f^{-1}[\{n\}]\in \mathcal {I} \text { for every } n\in \omega \}$ (in particular, $\mathcal {D}_{\mathrm {Fin}}$ denotes the family of all finite-to-one functions).We examine cardinal numbers $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  29
    Pseudo P-points and splitting number.Alan Dow & Saharon Shelah - 2019 - Archive for Mathematical Logic 58 (7-8):1005-1027.
    We construct a model in which the splitting number is large and every ultrafilter has a small subset with no pseudo-intersection.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24. Cichoń’s Maximum with Evasion Number.Takashi Yamazoe - forthcoming - Journal of Symbolic Logic:1-31.
    We show that the evasion number $\mathfrak {e}$ can be added to Cichoń’s maximum with a distinct value. More specifically, it is consistent that $\aleph _1<\operatorname {\mathrm {add}}(\mathcal {N})<\operatorname {\mathrm {cov}}(\mathcal {N})<\mathfrak {b}<\mathfrak {e}<\operatorname {\mathrm {non}}(\mathcal {M})<\operatorname {\mathrm {cov}}(\mathcal {M})<\mathfrak {d}<\operatorname {\mathrm {non}}(\mathcal {N})<\operatorname {\mathrm {cof}}(\mathcal {N})<2^{\aleph _0}$ holds.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  91
    Impossibility Results for Infinite-Electorate Abstract Aggregation Rules.Frederik Herzberg & Daniel Eckert - 2012 - Journal of Philosophical Logic 41 (1):273-286.
    Following Lauwers and Van Liedekerke (1995), this paper explores in a model-theoretic framework the relation between Arrovian aggregation rules and ultraproducts, in order to investigate a source of impossibility results for the case of an infinite number of individuals and an aggregation rule based on a free ultrafilter of decisive coalitions.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26.  46
    Some initial segments of the Rudin-Keisler ordering.Andreas Blass - 1981 - Journal of Symbolic Logic 46 (1):147-157.
    A 2-affable ultrafilter has only finitely many predecessors in the Rudin-Keisler ordering of isomorphism classes of ultrafilters over the natural numbers. If the continuum hypothesis is true, then there is an ℵ 1 -sequence of ultrafilters D α such that the strict Rudin-Keisler predecessors of D α are precisely the isomorphs of the D β 's for $\beta.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  49
    Uniformity, universality, and computability theory.Andrew S. Marks - 2017 - Journal of Mathematical Logic 17 (1):1750003.
    We prove a number of results motivated by global questions of uniformity in computabi- lity theory, and universality of countable Borel equivalence relations. Our main technical tool is a game for constructing functions on free products of countable groups. We begin by investigating the notion of uniform universality, first proposed by Montalbán, Reimann and Slaman. This notion is a strengthened form of a countable Borel equivalence relation being universal, which we conjecture is equivalent to the usual notion. With this (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  37
    Filter-linkedness and its effect on preservation of cardinal characteristics.Jörg Brendle, Miguel A. Cardona & Diego A. Mejía - 2021 - Annals of Pure and Applied Logic 172 (1):102856.
    We introduce the property “F-linked” of subsets of posets for a given free filter F on the natural numbers, and define the properties “μ-F-linked” and “θ-F-Knaster” for posets in a natural way. We show that θ-F-Knaster posets preserve strong types of unbounded families and of maximal almost disjoint families. Concerning iterations of such posets, we develop a general technique to construct θ-Fr-Knaster posets (where Fr is the Frechet ideal) via matrix iterations of <θ-ultrafilter-linked posets (restricted to some level of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  71
    Infinite lotteries, large and small sets.Luc Lauwers - 2017 - Synthese 194 (6):2203-2209.
    One result of this note is about the nonconstructivity of countably infinite lotteries: even if we impose very weak conditions on the assignment of probabilities to subsets of natural numbers we cannot prove the existence of such assignments constructively, i.e., without something such as the axiom of choice. This is a corollary to a more general theorem about large-small filters, a concept that extends the concept of free ultrafilters. The main theorem is that proving the existence of large-small filters requires (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30.  79
    Analytic ideals.Sławomir Solecki - 1996 - Bulletin of Symbolic Logic 2 (3):339-348.
    §1. Introduction. Ideals and filters of subsets of natural numbers have been studied by set theorists and topologists for a long time. There is a vast literature concerning various kinds of ultrafilters. There is also a substantial interest in nicely definable ideals—these by old results of Sierpiński are very far from being maximal— and the structure of such ideals will concern us in this announcement. In addition to being interesting in their own right, Borel and analytic ideals occur naturally in (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  31. Independence of the Grossone-Based Infinity Methodology from Non-standard Analysis and Comments upon Logical Fallacies in Some Texts Asserting the Opposite.Yaroslav D. Sergeyev - 2019 - Foundations of Science 24 (1):153-170.
    This paper considers non-standard analysis and a recently introduced computational methodology based on the notion of ①. The latter approach was developed with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework and in all the situations requiring these notions. Non-standard analysis is a classical purely symbolic technique that works with ultrafilters, external and internal sets, standard and non-standard numbers, etc. In its turn, the ①-based methodology does not use any of these (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  29
    Positive results in abstract model theory: a theory of compact logics.J. A. Makowsky & S. Shelah - 1983 - Annals of Pure and Applied Logic 25 (3):263-299.
    We prove that compactness is equivalent to the amalgamation property, provided the occurrence number of the logic is smaller than the first uncountable measurable cardinal. We also relate compactness to the existence of certain regular ultrafilters related to the logic and develop a general theory of compactness and its consequences. We also prove some combinatorial results of independent interest.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  33.  81
    An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals.Alexandre Borovik, Renling Jin & Mikhail G. Katz - 2012 - Notre Dame Journal of Formal Logic 53 (4):557-570.
    A construction of the real number system based on almost homomorphisms of the integers $\mathbb {Z}$ was proposed by Schanuel, Arthan, and others. We combine such a construction with the ultrapower or limit ultrapower construction to construct the hyperreals out of integers. In fact, any hyperreal field, whose universe is a set, can be obtained by such a one-step construction directly out of integers. Even the maximal (i.e., On -saturated) hyperreal number system described by Kanovei and Reeken (2004) (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  34.  67
    On the cofinality of ultrapowers.Andreas Blass & Heike Mildenberger - 1999 - Journal of Symbolic Logic 64 (2):727-736.
    We prove some restrictions on the possible cofinalities of ultrapowers of the natural numbers with respect to ultrafilters on the natural numbers. The restrictions involve three cardinal characteristics of the continuum, the splitting number s, the unsplitting number r, and the groupwise density number g. We also prove some related results for reduced powers with respect to filters other than ultrafilters.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  35. Indeterminacy of fair infinite lotteries.Philip Kremer - 2014 - Synthese 191 (8):1757-1760.
    In ‘Fair Infinite Lotteries’ (FIL), Wenmackers and Horsten use non-standard analysis to construct a family of nicely-behaved hyperrational-valued probability measures on sets of natural numbers. Each probability measure in FIL is determined by a free ultrafilter on the natural numbers: distinct free ultrafilters determine distinct probability measures. The authors reply to a worry about a consequent ‘arbitrariness’ by remarking, “A different choice of free ultrafilter produces a different ... probability function with the same standard part but infinitesimal differences.” (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  36.  39
    Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points.Natasha Dobrinen, José G. Mijares & Timothy Trujillo - 2017 - Archive for Mathematical Logic 56 (7-8):733-782.
    A general method for constructing a new class of topological Ramsey spaces is presented. Members of such spaces are infinite sequences of products of Fraïssé classes of finite relational structures satisfying the Ramsey property. The Product Ramsey Theorem of Sokič is extended to equivalence relations for finite products of structures from Fraïssé classes of finite relational structures satisfying the Ramsey property and the Order-Prescribed Free Amalgamation Property. This is essential to proving Ramsey-classification theorems for equivalence relations on fronts, generalizing the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  37.  43
    Bolzano’s Infinite Quantities.Kateřina Trlifajová - 2018 - Foundations of Science 23 (4):681-704.
    In his Foundations of a General Theory of Manifolds, Georg Cantor praised Bernard Bolzano as a clear defender of actual infinity who had the courage to work with infinite numbers. At the same time, he sharply criticized the way Bolzano dealt with them. Cantor’s concept was based on the existence of a one-to-one correspondence, while Bolzano insisted on Euclid’s Axiom of the whole being greater than a part. Cantor’s set theory has eventually prevailed, and became a formal basis of contemporary (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  38.  22
    On Cohesive Powers of Linear Orders.Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul Shafer, Alexandra A. Soskova & Stefan V. Vatev - 2023 - Journal of Symbolic Logic 88 (3):947-1004.
    Cohesive powersof computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let$\omega $,$\zeta $, and$\eta $denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of$\omega $. If$\mathcal {L}$is a computable copy of$\omega $that is computably isomorphic to the usual presentation of$\omega $, then every cohesive power of$\mathcal {L}$has order-type$\omega + (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  20
    P-points, MAD families and Cardinal Invariants.Osvaldo Guzmán González - 2022 - Bulletin of Symbolic Logic 28 (2):258-260.
    The main topics of this thesis are cardinal invariants, P -points and MAD families. Cardinal invariants of the continuum are cardinal numbers that are bigger than $\aleph _{0}$ and smaller or equal than $\mathfrak {c}.$ Of course, they are only interesting when they have some combinatorial or topological definition. An almost disjoint family is a family of infinite subsets of $\omega $ such that the intersection of any two of its elements is finite. A MAD family is a maximal almost (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  22
    Fallen cardinals.Menachem Kojman & Saharon Shelah - 2001 - Annals of Pure and Applied Logic 109 (1-2):117-129.
    We prove that for every singular cardinal μ of cofinality ω, the complete Boolean algebra contains a complete subalgebra which is isomorphic to the collapse algebra CompCol. Consequently, adding a generic filter to the quotient algebra collapses μ0 to 1. Another corollary is that the Baire number of the space U of all uniform ultrafilters over μ is equal to ω2. The corollaries affirm two conjectures of Balcar and Simon. The proof uses pcf theory.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41.  4
    The Tarski–Lindenbaum algebra of the class of strongly constructivizable models with $$\omega $$-stable theories.Mikhail Peretyat’kin - 2025 - Archive for Mathematical Logic 64 (1):67-78.
    We study the class of all strongly constructivizable models having $$\omega $$ -stable theories in a fixed finite rich signature. It is proved that the Tarski–Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean $$\Sigma ^1_1$$ -algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of all Boolean $$\Sigma ^1_1$$ -algebras. This gives a characterization to the Tarski-Lindenbaum (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  53
    Sizes of Countable Sets.Kateřina Trlifajová - 2024 - Philosophia Mathematica 32 (1):82-114.
    The paper introduces the notion of size of countable sets, which preserves the Part-Whole Principle. The sizes of the natural and the rational numbers, their subsets, unions, and Cartesian products are algorithmically enumerable as sequences of natural numbers. The method is similar to that of Numerosity Theory, but in comparison it is motivated by Bolzano’s concept of infinite series, it is constructive because it does not use ultrafilters, and set sizes are uniquely determined. The results mostly agree, but some differ, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43. Modulated logics and flexible reasoning.Walter Carnielli & Maria Cláudia C. Grácio - 2008 - Logic and Logical Philosophy 17 (3):211-249.
    This paper studies a family of monotonic extensions of first-order logic which we call modulated logics, constructed by extending classical logic through generalized quantifiers called modulated quantifiers. This approach offers a new regard to what we call flexible reasoning. A uniform treatment of modulated logics is given here, obtaining some general results in model theory. Besides reviewing the “Logic of Ultrafilters”, which formalizes inductive assertions of the kind “almost all”, two new monotonic logical systems are proposed here, the “Logic of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  44.  15
    Forcing theory and combinatorics of the real line.Miguel Antonio Cardona-Montoya - 2023 - Bulletin of Symbolic Logic 29 (2):299-300.
    The main purpose of this dissertation is to apply and develop new forcing techniques to obtain models where several cardinal characteristics are pairwise different as well as force many (even more, continuum many) different values of cardinal characteristics that are parametrized by reals. In particular, we look at cardinal characteristics associated with strong measure zero, Yorioka ideals, and localization and anti-localization cardinals.In this thesis we introduce the property “F-linked” of subsets of posets for a given free filter F on the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  77
    Simplified models establishing some of né:Zondet's results on erdös–woods conjecture.Marcel Guillaume - 2000 - Synthese 125 (1-2):133 - 146.
    The first step of the construction of Nézondet's models of finite arithmetics which are counter-models to Erdös–Woods conjecture is to add to the natural numbers the non-standard numbers generated by one of them, using addition, multiplication and divisions by a natural factor allowed in an ultrapower construction. After a review of some properties of such a structure, we show that the choice of the ultrafilter can be managed, using just the Chinese remainder's theorem, so that a model as desired (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  46.  65
    Groupwise dense families.Heike Mildenberger - 2001 - Archive for Mathematical Logic 40 (2):93-112.
    We show that the Filter Dichotomy Principle implies that there are exactly four classes of ideals in the set of increasing functions from the natural numbers. We thus answer two open questions on consequences of ? < ?. We show that ? < ? implies that ? = ?, and that Filter Dichotomy together with ? < ? implies ? < ?. The technical means is the investigation of groupwise dense sets, ideals, filters and ultrafilters. With related techniques we prove (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  47.  62
    Ramsey sets, the Ramsey ideal, and other classes over R.Paul Corazza - 1992 - Journal of Symbolic Logic 57 (4):1441 - 1468.
    We improve results of Marczewski, Frankiewicz, Brown, and others comparing the σ-ideals of measure zero, meager, Marczewski measure zero, and completely Ramsey null sets; in particular, we remove CH from the hypothesis of many of Brown's constructions of sets lying in some of these ideals but not in others. We improve upon work of Marczewski by constructing, without CH, a nonmeasurable Marczewski measure zero set lacking the property of Baire. We extend our analysis of σ-ideals to include the completely Ramsey (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  48. [Omnibus Review].Peter Nyikos - 1992 - Journal of Symbolic Logic 57 (2):763-766.
    Reviewed Works:Andreas Blass, Saharon Shelah, Ultrafilters with Small Generating Sets.Andreas Blass, Saharon Shelah, There May Be Simple $P_{\aleph_1}$- and $P_{\aleph_2}$-Points and the Rudin-Keisler ordering may be downward directed.Andreas Blass, Near Coherence of Filters. II: Applications to Operator Ideals, the Stone- Cech Remainder of a Half-Line, Order Ideals of Sequences, and the Slenderness of Groups.Andreas Blass, Saharon Shelah, Near Coherence of Filters III: A Simplified Consistency Proof.Andreas Blass, Claude Laflamme, Consistency Results About Filters and the Number of Inequivalent Growth Types.Andreas (...)
     
    Export citation  
     
    Bookmark  
  49. Flat sets.Arthur D. Grainger - 1994 - Journal of Symbolic Logic 59 (3):1012-1021.
    Let X be a set, and let $\hat{X} = \bigcup^\infty_{n = 0} X_n$ be the superstructure of X, where X 0 = X and X n + 1 = X n ∪ P(X n ) (P(X) is the power set of X) for n ∈ ω. The set X is called a flat set if and only if $X \neq \varnothing.\varnothing \not\in X.x \cap \hat X = \varnothing$ for each x ∈ X, and $x \cap \hat{y} = \varnothing$ for x.y (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  50.  25
    Cohesive powers of structures.Valentina Harizanov & Keshav Srinivasan - 2024 - Archive for Mathematical Logic 63 (5):679-702.
    A cohesive power of a structure is an effective analog of the classical ultrapower of a structure. We start with a computable structure, and consider its effective power over a cohesive set of natural numbers. A cohesive set is an infinite set of natural numbers that is indecomposable with respect to computably enumerable sets. It plays the role of an ultrafilter, and the elements of a cohesive power are the equivalence classes of certain partial computable functions determined by the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 942