Results for '03C10'

14 found
Order:
  1.  13
    Saturated Models for the Working Model Theorist.Yatir Halevi & Itay Kaplan - 2023 - Bulletin of Symbolic Logic 29 (2):163-169.
    We put in print a classical result that states that for most purposes, there is no harm in assuming the existence of saturated models in model theory. The presentation is aimed for model theorists with only basic knowledge of axiomatic set theory.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  5
    Generic Derivations on Algebraically Bounded Structures.Antongiulio Fornasiero & Giuseppina Terzo - forthcoming - Journal of Symbolic Logic:1-27.
    Let${\mathbb K}$be an algebraically bounded structure, and letTbe its theory. IfTis model complete, then the theory of${\mathbb K}$endowed with a derivation, denoted by$T^{\delta }$, has a model completion. Additionally, we prove that if the theoryTis stable/NIP then the model completion of$T^{\delta }$is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  8
    Independence Relations in Abstract Elementary Categories.Mark Kamsma - 2022 - Bulletin of Symbolic Logic 28 (4):531-531.
    In model theory, a branch of mathematical logic, we can classify mathematical structures based on their logical complexity. This yields the so-called stability hierarchy. Independence relations play an important role in this stability hierarchy. An independence relation tells us which subsets of a structure contain information about each other, for example, linear independence in vector spaces yields such a relation.Some important classes in the stability hierarchy are stable, simple, and NSOP $_1$, each being contained in the next. For each of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  15
    Elementary Equivalence in Positive Logic Via Prime Products.Tommaso Moraschini, Johann J. Wannenburg & Kentaro Yamamoto - forthcoming - Journal of Symbolic Logic:1-18.
    We introduce prime products as a generalization of ultraproducts for positive logic. Prime products are shown to satisfy a version of Łoś’s Theorem restricted to positive formulas, as well as the following variant of the Keisler Isomorphism Theorem: under the generalized continuum hypothesis, two models have the same positive theory if and only if they have isomorphic prime powers of ultrapowers.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  33
    Modal Model Theory.Joel David Hamkins & Wojciech Aleksander Wołoszyn - 2024 - Notre Dame Journal of Formal Logic 65 (1):1-37.
    We introduce the subject of modal model theory, where one studies a mathematical structure within a class of similar structures under an extension concept that gives rise to mathematically natural notions of possibility and necessity. A statement φ is possible in a structure (written φ) if φ is true in some extension of that structure, and φ is necessary (written φ) if it is true in all extensions of the structure. A principal case for us will be the class Mod(T) (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  16
    A Family of dp-Minimal Expansions of (Z;+).Chieu-Minh Tran & Erik Walsberg - 2023 - Notre Dame Journal of Formal Logic 64 (2):225-238.
    We consider structures of the form (Z;+,C), where C is an additive cyclic order on (Z;+). We show that such structures are dp-minimal and in this way produce a continuum-size family of dp-minimal expansions of (Z;+) such that no two members of the family define the same subsets of Z.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  19
    Model Completions for Universal Classes of Algebras: Necessary and Sufficient Conditions.George Metcalfe & Luca Reggio - 2023 - Journal of Symbolic Logic 88 (1):381-417.
    Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of algebraic structures (algebras) to have a model completion, extending a characterization provided by Wheeler. For varieties of algebras that have equationally definable principal congruences and the compact intersection property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices, the existence of a model completion implies (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  32
    Regular bilattices.Alexej P. Pynko - 2000 - Journal of Applied Non-Classical Logics 10 (1):93-111.
    ABSTRACT A bilattice is said to be regular provided its truth conjunction and disjunction are monotonic with respect to its knowledge ordering. The principal result of this paper is that the following properties of a bilattice B are equivalent: 1. B is regular; 2. the truth conjunction and disjunction of B are definable through the rest of the operations and constants of B; 3. B is isomorphic to a bilattice of the form L 1 · L 2 where L 1 (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  26
    What Model Companionship Can Say About the Continuum Problem.Giorgio Venturi & Matteo Viale - 2024 - Review of Symbolic Logic 17 (2):546-585.
    We present recent results on the model companions of set theory, placing them in the context of a current debate in the philosophy of mathematics. We start by describing the dependence of the notion of model companionship on the signature, and then we analyze this dependence in the specific case of set theory. We argue that the most natural model companions of set theory describe (as the signature in which we axiomatize set theory varies) theories of $H_{\kappa ^+}$, as $\kappa (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  68
    Cell decomposition and definable functions for weak p‐adic structures.Eva Leenknegt - 2012 - Mathematical Logic Quarterly 58 (6):482-497.
    We develop a notion of cell decomposition suitable for studying weak p-adic structures definable). As an example, we consider a structure with restricted addition.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  11
    Model Theory of Derivations of the Frobenius Map Revisited.Jakub Gogolok - 2023 - Journal of Symbolic Logic 88 (3):1213-1229.
    We prove some results about the model theory of fields with a derivation of the Frobenius map, especially that the model companion of this theory is axiomatizable by axioms used by Wood in the case of the theory $\operatorname {DCF}_p$ and that it eliminates quantifiers after adding the inverse of the Frobenius map to the language. This strengthens the results from [4]. As a by-product, we get a new geometric axiomatization of this model companion. Along the way we also prove (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  21
    Model-Theoretic Properties of Dynamics on the Cantor Set.Christopher J. Eagle & Alan Getz - 2022 - Notre Dame Journal of Formal Logic 63 (3):357-371.
    We examine topological dynamical systems on the Cantor set from the point of view of the continuous model theory of commutative C*-algebras. After some general remarks, we focus our attention on the generic homeomorphism of the Cantor set, as constructed by Akin, Glasner, and Weiss. We show that this homeomorphism is the prime model of its theory. We also show that the notion of “generic” used by Akin, Glasner, and Weiss is distinct from the notion of “generic” encountered in Fraïssé (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  48
    Quantifier elimination for elementary geometry and elementary affine geometry.Rafael Grimson, Bart Kuijpers & Walied Othman - 2012 - Mathematical Logic Quarterly 58 (6):399-416.
    We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry , based on extending equation image and equation image, respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  26
    Quantifier-eliminable locally finite graphs.Shawn Hedman & Wai Yan Pong - 2011 - Mathematical Logic Quarterly 57 (2):180-185.
    We identify the locally finite graphs that are quantifier-eliminable and their first order theories in the signature of distance predicates. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Direct download  
     
    Export citation  
     
    Bookmark