Results for '03E17'

25 found
Order:
  1.  29
    Meager-Additive Sets in Topological Groups.Ondřej Zindulka - 2022 - Journal of Symbolic Logic 87 (3):1046-1064.
    By the Galvin–Mycielski–Solovay theorem, a subset X of the line has Borel’s strong measure zero if and only if $M+X\neq \mathbb {R}$ for each meager set M.A set $X\subseteq \mathbb {R}$ is meager-additive if $M+X$ is meager for each meager set M. Recently a theorem on meager-additive sets that perfectly parallels the Galvin–Mycielski–Solovay theorem was proven: A set $X\subseteq \mathbb {R}$ is meager-additive if and only if it has sharp measure zero, a notion akin to strong measure zero.We investigate the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  26
    Higher Independence.Vera Fischer & Diana Carolina Montoya - 2022 - Journal of Symbolic Logic 87 (4):1606-1630.
    We study higher analogues of the classical independence number on $\omega $. For $\kappa $ regular uncountable, we denote by $i(\kappa )$ the minimal size of a maximal $\kappa $ -independent family. We establish ZFC relations between $i(\kappa )$ and the standard higher analogues of some of the classical cardinal characteristics, e.g., $\mathfrak {r}(\kappa )\leq \mathfrak {i}(\kappa )$ and $\mathfrak {d}(\kappa )\leq \mathfrak {i}(\kappa )$. For $\kappa $ measurable, assuming that $2^{\kappa }=\kappa ^{+}$ we construct a maximal $\kappa $ -independent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  23
    Strong Colorings Over Partitions.William Chen-Mertens, Menachem Kojman & Juris Steprāns - 2021 - Bulletin of Symbolic Logic 27 (1):67-90.
    A strong coloring on a cardinal$\kappa $is a function$f:[\kappa ]^2\to \kappa $such that for every$A\subseteq \kappa $of full size$\kappa $, every color$\unicode{x3b3} <\kappa $is attained by$f\restriction [A]^2$. The symbol$$ \begin{align*} \kappa\nrightarrow[\kappa]^2_{\kappa} \end{align*} $$asserts the existence of a strong coloring on$\kappa $.We introduce the symbol$$ \begin{align*} \kappa\nrightarrow_p[\kappa]^2_{\kappa} \end{align*} $$which asserts the existence of a coloring$f:[\kappa ]^2\to \kappa $which isstrong over a partition$p:[\kappa ]^2\to \theta $. A coloringfis strong overpif for every$A\in [\kappa ]^{\kappa }$there is$i<\theta $so that for every color$\unicode{x3b3} <\kappa $is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  19
    Lebesgue Measure Zero Modulo Ideals on the Natural Numbers.Viera Gavalová & Diego A. Mejía - forthcoming - Journal of Symbolic Logic:1-31.
    We propose a reformulation of the ideal $\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on $\omega $, which we denote by $\mathcal {N}_J$. In the same way, we reformulate the ideal $\mathcal {E}$ generated by $F_\sigma $ measure zero sets of reals modulo J, which we denote by $\mathcal {N}^*_J$. We show that these are $\sigma $ -ideals and that $\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  44
    Remarks on gaps in Dense (Q) / nwd.Teppo Kankaanpää - 2013 - Mathematical Logic Quarterly 59 (1-2):51-61.
    The structure Dense /nwd and gaps in analytic quotients of equation image have been studied in the literature 2, 3, 1. We prove that the structures Dense /nwd and equation image have gaps of type equation image, and there are no -gaps for equation image, where equation image is the additivity number of the meager ideal. We also prove the existence of -gaps in these structures. Finally we characterize the cofinality of the meager ideal equation image using families of sets (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  12
    Tree Forcing and Definable Maximal Independent Sets in Hypergraphs.Jonathan Schilhan - 2022 - Journal of Symbolic Logic 87 (4):1419-1458.
    We show that after forcing with a countable support iteration or a finite product of Sacks or splitting forcing over L, every analytic hypergraph on a Polish space admits a $\mathbf {\Delta }^1_2$ maximal independent set. This extends an earlier result by Schrittesser (see [25]). As a main application we get the consistency of $\mathfrak {r} = \mathfrak {u} = \mathfrak {i} = \omega _2$ together with the existence of a $\Delta ^1_2$ ultrafilter, a $\Pi ^1_1$ maximal independent family, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7. Generalized Tower Spectra.Vera Fischer & Silvan Horvath - forthcoming - Journal of Symbolic Logic:1-17.
    We investigate the tower spectrum in the generalized Baire space, i.e., the set of lengths of towers in $\kappa ^\kappa $. We show that both small and large tower spectra at all regular cardinals simultaneously are consistent. Furthermore, based on previous work by Bağ, the first author and Friedman, we prove that globally, a small tower spectrum is consistent with an arbitrarily large spectrum of maximal almost disjoint families. Finally, we show that any non-trivial upper bound on the tower spectrum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  11
    Discontinuous Homomorphisms of With.Bob A. Dumas - 2024 - Journal of Symbolic Logic 89 (2):665-696.
    Assume that M is a transitive model of $ZFC+CH$ containing a simplified $(\omega _1,2)$ -morass, $P\in M$ is the poset adding $\aleph _3$ generic reals and G is P-generic over M. In M we construct a function between sets of terms in the forcing language, that interpreted in $M[G]$ is an $\mathbb R$ -linear order-preserving monomorphism from the finite elements of an ultrapower of the reals, over a non-principal ultrafilter on $\omega $, into the Esterle algebra of formal power series. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  9
    Partitioning the Real Line Into Borel Sets.Will Brian - 2024 - Journal of Symbolic Logic 89 (2):549-568.
    For which infinite cardinals $\kappa $ is there a partition of the real line ${\mathbb R}$ into precisely $\kappa $ Borel sets? Work of Lusin, Souslin, and Hausdorff shows that ${\mathbb R}$ can be partitioned into $\aleph _1$ Borel sets. But other than this, we show that the spectrum of possible sizes of partitions of ${\mathbb R}$ into Borel sets can be fairly arbitrary. For example, given any $A \subseteq \omega $ with $0,1 \in A$, there is a forcing extension (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  2
    Separating Many Localisation Cardinals on the Generalised Baire Space.Tristan van der Vlugt - 2024 - Journal of Symbolic Logic 89 (3):1212-1231.
    Given a cofinal cardinal function $h\in {}^{\kappa }\kappa $ for $\kappa $ inaccessible, we consider the dominating h-localisation number, that is, the least cardinality of a dominating set of h-slaloms such that every $\kappa $ -real is localised by a slalom in the dominating set. It was proved in [3] that the dominating localisation numbers can be consistently different for two functions h (the identity function and the power function). We will construct a $\kappa ^+$ -sized family of functions h (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11. More on yet Another Ideal Version of the Bounding Number.Adam Kwela - forthcoming - Journal of Symbolic Logic:1-16.
    This is a continuation of the paper [J. Symb. Log. 87 (2022), 1065–1092]. For an ideal $\mathcal {I}$ on $\omega $ we denote $\mathcal {D}_{\mathcal {I}}=\{f\in \omega ^{\omega }: f^{-1}[\{n\}]\in \mathcal {I} \text { for every } n\in \omega \}$ and write $f\leq _{\mathcal {I}} g$ if $\{n\in \omega :f(n)>g(n)\}\in \mathcal {I}$, where $f,g\in \omega ^{\omega }$. We study the cardinal numbers $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}}))$ describing the smallest sizes of subsets of $\mathcal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  18
    Set Theory and a Model of the Mind in Psychology.Asger Törnquist & Jens Mammen - 2023 - Review of Symbolic Logic 16 (4):1233-1259.
    We investigate the mathematics of a model of the human mind which has been proposed by the psychologist Jens Mammen. Mathematical realizations of this model consists of what the first author (A.T.) has called Mammen spaces, where a Mammen space is a triple in the Baumgartner–Laver model.Finally, consequences for psychology are discussed.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  2
    Classifying Invariants for E1: A Tail of a Generic Real.Assaf Shani - 2024 - Notre Dame Journal of Formal Logic 65 (3):333-356.
    Let E be an analytic equivalence relation on a Polish space. We introduce a framework for studying the possible “reasonable” complete classifications and the complexity of possible classifying invariants for E, such that: (1) the standard results and intuitions regarding classifications by countable structures are preserved in this framework; (2) this framework respects Borel reducibility; and (3) this framework allows for a precise study of the possible invariants of certain equivalence relations which are not classifiable by countable structures, such as (...))
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  32
    Yet Another Ideal Version of the Bounding Number.Rafał Filipów & Adam Kwela - 2022 - Journal of Symbolic Logic 87 (3):1065-1092.
    Let $\mathcal {I}$ be an ideal on $\omega $. For $f,\,g\in \omega ^{\omega }$ we write $f \leq _{\mathcal {I}} g$ if $f(n) \leq g(n)$ for all $n\in \omega \setminus A$ with some $A\in \mathcal {I}$. Moreover, we denote $\mathcal {D}_{\mathcal {I}}=\{f\in \omega ^{\omega }: f^{-1}[\{n\}]\in \mathcal {I} \text { for every } n\in \omega \}$ (in particular, $\mathcal {D}_{\mathrm {Fin}}$ denotes the family of all finite-to-one functions).We examine cardinal numbers $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  20
    Ways of Destruction.Barnabás Farkas & Lyubomyr Zdomskyy - 2022 - Journal of Symbolic Logic 87 (3):938-966.
    We study the following natural strong variant of destroying Borel ideals: $\mathbb {P}$ $+$ -destroys $\mathcal {I}$ if $\mathbb {P}$ adds an $\mathcal {I}$ -positive set which has finite intersection with every $A\in \mathcal {I}\cap V$. Also, we discuss the associated variants $$ \begin{align*} \mathrm{non}^*(\mathcal{I},+)=&\min\big\{|\mathcal{Y}|:\mathcal{Y}\subseteq\mathcal{I}^+,\; \forall\;A\in\mathcal{I}\;\exists\;Y\in\mathcal{Y}\;|A\cap Y| \omega $ ; (4) we characterise when the Laver–Prikry, $\mathbb {L}(\mathcal {I}^*)$ -generic real $+$ -destroys $\mathcal {I}$, and in the case of P-ideals, when exactly $\mathbb {L}(\mathcal {I}^*)$ $+$ -destroys $\mathcal {I}$ ; (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  19
    Games on Base Matrices.Vera Fischer, Marlene Koelbing & Wolfgang Wohofsky - 2023 - Notre Dame Journal of Formal Logic 64 (2):247-251.
    We show that base matrices for P(ω)∕fin of regular height larger than h necessarily have maximal branches that are not cofinal. The same holds for base matrices of height h if tSpoiler
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  36
    Muchnik Degrees and Cardinal Characteristics.Benoit Monin & André Nies - 2021 - Journal of Symbolic Logic 86 (2):471-498.
    A mass problem is a set of functions$\omega \to \omega $. For mass problems${\mathcal {C}}, {\mathcal {D}}$, one says that${\mathcal {C}}$is Muchnik reducible to${\mathcal {D}}$if each function in${\mathcal {C}}$is computed by a function in${\mathcal {D}}$. In this paper we study some highness properties of Turing oracles, which we view as mass problems. We compare them with respect to Muchnik reducibility and its uniform strengthening, Medvedev reducibility.For$p \in [0,1]$let${\mathcal {D}}(p)$be the mass problem of infinite bit sequencesy(i.e.,$\{0,1\}$-valued functions) such that for each (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  33
    On monotone hull operations.Marek Balcerzak & Tomasz Filipczak - 2011 - Mathematical Logic Quarterly 57 (2):186-193.
    We extend results of Elekes and Máthé on monotone Borel hulls to an abstract setting of measurable space with negligibles. This scheme yields the respective theorems in the case of category and in the cases associated with the Mendez σ-ideals on the plane. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  13
    Forcing theory and combinatorics of the real line.Miguel Antonio Cardona-Montoya - 2023 - Bulletin of Symbolic Logic 29 (2):299-300.
    The main purpose of this dissertation is to apply and develop new forcing techniques to obtain models where several cardinal characteristics are pairwise different as well as force many (even more, continuum many) different values of cardinal characteristics that are parametrized by reals. In particular, we look at cardinal characteristics associated with strong measure zero, Yorioka ideals, and localization and anti-localization cardinals.In this thesis we introduce the property “F-linked” of subsets of posets for a given free filter F on the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  16
    Madness in vector spaces.Iian B. Smythe - 2019 - Journal of Symbolic Logic 84 (4):1590-1611.
    We consider maximal almost disjoint families of block subspaces of countable vector spaces, focusing on questions of their size and definability. We prove that the minimum infinite cardinality of such a family cannot be decided in ZFC and that the “spectrum” of cardinalities of mad families of subspaces can be made arbitrarily large, in analogy to results for mad families on ω. We apply the author’s local Ramsey theory for vector spaces [32] to give partial results concerning their definability.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  25
    Partition Forcing and Independent Families.Jorge A. Cruz-Chapital, Vera Fischer, Osvaldo Guzmán & Jaroslav Šupina - 2023 - Journal of Symbolic Logic 88 (4):1590-1612.
    We show that Miller partition forcing preserves selective independent families and P-points, which implies the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {u}=\mathfrak {i}<\mathfrak {a}_T=\omega _2$. In addition, we show that Shelah’s poset for destroying the maximality of a given maximal ideal preserves tight mad families and so we establish the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {i}=\omega _1<\mathfrak {u}=\mathfrak {a}_T=\omega _2$.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  16
    Tight Eventually Different Families.Vera Fischer & Corey Bacal Switzer - 2024 - Journal of Symbolic Logic 89 (2):697-723.
    Generalizing the notion of a tight almost disjoint family, we introduce the notions of a tight eventually different family of functions in Baire space and a tight eventually different set of permutations of $\omega $. Such sets strengthen maximality, exist under $\mathsf {MA} (\sigma \mathrm {-centered})$ and come with a properness preservation theorem. The notion of tightness also generalizes earlier work on the forcing indestructibility of maximality of families of functions. As a result we compute the cardinals $\mathfrak {a}_e$ and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  14
    Katětov Order on Mad Families.Osvaldo Guzmán - 2024 - Journal of Symbolic Logic 89 (2):794-828.
    We continue with the study of the Katětov order on MAD families. We prove that Katětov maximal MAD families exist under $\mathfrak {b=c}$ and that there are no Katětov-top MAD families assuming $\mathfrak {s\leq b}.$ This improves previously known results from the literature. We also answer a problem form Arciga, Hrušák, and Martínez regarding Katětov maximal MAD families.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  26
    More on Halfway New Cardinal Characteristics.Barnabás Farkas, Lukas Daniel Klausner & Marc Lischka - forthcoming - Journal of Symbolic Logic:1-16.
    We continue investigating variants of the splitting and reaping numbers introduced in [4]. In particular, answering a question raised there, we prove the consistency of and of. Moreover, we discuss their natural generalisations $\mathfrak {s}_{\rho }$ and $\mathfrak {r}_{\rho }$ for $\rho \in (0,1)$, and show that $\mathfrak {r}_{\rho }$ does not depend on $\rho $.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  12
    Strong Measure Zero Sets on for Inaccessible.Nick Steven Chapman & Johannes Philipp Schürz - forthcoming - Journal of Symbolic Logic:1-31.
    We investigate the notion of strong measure zero sets in the context of the higher Cantor space $2^\kappa $ for $\kappa $ at least inaccessible. Using an iteration of perfect tree forcings, we give two proofs of the relative consistency of $$\begin{align*}|2^\kappa| = \kappa^{++} + \forall X \subseteq 2^\kappa:\ X \textrm{ is strong measure zero if and only if } |X| \leq \kappa^+. \end{align*}$$ Furthermore, we also investigate the stronger notion of stationary strong measure zero and show that the equivalence (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark