Results for 'Computably enumerable Turing degree'

963 found
Order:
  1.  59
    Embedding finite lattices into the ideals of computably enumerable Turing degrees.William Calhoun & Manuel Lerman - 2001 - Journal of Symbolic Logic 66 (4):1791-1802.
    We show that the lattice L 20 is not embeddable into the lattice of ideals of computably enumerable Turing degrees (J). We define a structure called a pseudolattice that generalizes the notion of a lattice, and show that there is a Π 2 necessary and sufficient condition for embedding a finite pseudolattice into J.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  2.  57
    Upper bounds on ideals in the computably enumerable Turing degrees.George Barmpalias & André Nies - 2011 - Annals of Pure and Applied Logic 162 (6):465-473.
    We study ideals in the computably enumerable Turing degrees, and their upper bounds. Every proper ideal in the c.e. Turing degrees has an incomplete upper bound. It follows that there is no prime ideal in the c.e. Turing degrees. This answers a question of Calhoun [2]. Every proper ideal in the c.e. Turing degrees has a low2 upper bound. Furthermore, the partial order of ideals under inclusion is dense.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  9
    Minimal weak truth table degrees and computably enumerable Turing degrees.R. G. Downey - 2020 - Providence, RI: American Mathematical Society. Edited by Keng Meng Ng & Reed Solomon.
    Informal construction -- Formal construction -- Limiting results.
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  27
    An Interval of Computably Enumerable Isolating Degrees.Matthew C. Salts - 1999 - Mathematical Logic Quarterly 45 (1):59-72.
    We construct computably enumerable degrees a < b such that all computably enumerable degrees c with a < c < b isolate some d. c. e. degree d.
    Direct download  
     
    Export citation  
     
    Bookmark  
  5.  9
    A hierarchy of Turing degrees: a transfinite hierarchy of lowness notions in the computably enumerable degrees, unifying classes, and natural definability.R. G. Downey - 2020 - Princeton: Princeton University Press. Edited by Noam Greenberg.
    This book presents new results in computability theory, a branch of mathematical logic and computer science that has become increasingly relevant in recent years. The field's connections with disparate areas of mathematical logic and mathematics more generally have grown deeper, and now have a variety of applications in topology, group theory, and other subfields. This monograph establishes new directions in the field, blending classic results with modern research areas such as algorithmic randomness. The significance of the book lies not only (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  33
    Turing degrees of hypersimple relations on computable structures.Valentina S. Harizanov - 2003 - Annals of Pure and Applied Logic 121 (2-3):209-226.
    Let be an infinite computable structure, and let R be an additional computable relation on its domain A. The syntactic notion of formal hypersimplicity of R on , first introduced and studied by Hird, is analogous to the computability-theoretic notion of hypersimplicity of R on A, given the definability of certain effective sequences of relations on A. Assuming that R is formally hypersimple on , we give general sufficient conditions for the existence of a computable isomorphic copy of on whose (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  7.  27
    The partial orderings of the computably enumerable ibT-degrees and cl-degrees are not elementarily equivalent.Klaus Ambos-Spies, Philipp Bodewig, Yun Fan & Thorsten Kräling - 2013 - Annals of Pure and Applied Logic 164 (5):577-588.
    We show that, in the partial ordering of the computably enumerable computable Lipschitz degrees, there is a degree a>0a>0 such that the class of the degrees which do not cup to a is not bounded by any degree less than a. Since Ambos-Spies [1] has shown that, in the partial ordering of the c.e. identity-bounded Turing degrees, for any degree a>0a>0 the degrees which do not cup to a are bounded by the 1-shift a+1a+1 (...))
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  8. The ibT degrees of computably enumerable sets are not dense.George Barmpalias & Andrew E. M. Lewis - 2006 - Annals of Pure and Applied Logic 141 (1):51-60.
    We show that the identity bounded Turing degrees of computably enumerable sets are not dense.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  9.  36
    Computably enumerable sets and quasi-reducibility.R. Downey, G. LaForte & A. Nies - 1998 - Annals of Pure and Applied Logic 95 (1-3):1-35.
    We consider the computably enumerable sets under the relation of Q-reducibility. We first give several results comparing the upper semilattice of c.e. Q-degrees, RQ, Q, under this reducibility with the more familiar structure of the c.e. Turing degrees. In our final section, we use coding methods to show that the elementary theory of RQ, Q is undecidable.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  10.  28
    A minimal pair joining to a plus cupping Turing degree.Dengfeng Li & Angsheng Li - 2003 - Mathematical Logic Quarterly 49 (6):553-566.
    A computably enumerable degree a is called nonbounding, if it bounds no minimal pair, and plus cupping, if every nonzero c.e. degree x below a is cuppable. Let NB and PC be the sets of all nonbounding and plus cupping c.e. degrees, respectively. Both NB and PC are well understood, but it has not been possible so far to distinguish between the two classes. In the present paper, we investigate the relationship between the classes NB and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  53
    The computable Lipschitz degrees of computably enumerable sets are not dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
    The computable Lipschitz reducibility was introduced by Downey, Hirschfeldt and LaForte under the name of strong weak truth-table reducibility [6]). This reducibility measures both the relative randomness and the relative computational power of real numbers. This paper proves that the computable Lipschitz degrees of computably enumerable sets are not dense. An immediate corollary is that the Solovay degrees of strongly c.e. reals are not dense. There are similarities to Barmpalias and Lewis’ proof that the identity bounded Turing (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  12.  34
    Every incomplete computably enumerable truth-table degree is branching.Peter A. Fejer & Richard A. Shore - 2001 - Archive for Mathematical Logic 40 (2):113-123.
    If r is a reducibility between sets of numbers, a natural question to ask about the structure ? r of the r-degrees containing computably enumerable sets is whether every element not equal to the greatest one is branching (i.e., the meet of two elements strictly above it). For the commonly studied reducibilities, the answer to this question is known except for the case of truth-table (tt) reducibility. In this paper, we answer the question in the tt case by (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  26
    A computably enumerable vector space with the strong antibasis property.L. R. Galminas - 2000 - Archive for Mathematical Logic 39 (8):605-629.
    Downey and Remmel have completely characterized the degrees of c.e. bases for c.e. vector spaces (and c.e. fields) in terms of weak truth table degrees. In this paper we obtain a structural result concerning the interaction between the c.e. Turing degrees and the c.e. weak truth table degrees, which by Downey and Remmel's classification, establishes the existence of c.e. vector spaces (and fields) with the strong antibasis property (a question which they raised). Namely, we construct c.e. sets $B<_{\rm T}A$ (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14. (1 other version)Definability, automorphisms, and dynamic properties of computably enumerable sets.Leo Harrington & Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (2):199-213.
    We announce and explain recent results on the computably enumerable (c.e.) sets, especially their definability properties (as sets in the spirit of Cantor), their automorphisms (in the spirit of Felix Klein's Erlanger Programm), their dynamic properties, expressed in terms of how quickly elements enter them relative to elements entering other sets, and the Martin Invariance Conjecture on their Turing degrees, i.e., their information content with respect to relative computability (Turing reducibility).
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  15. Decomposition and infima in the computably enumerable degrees.Rodney G. Downey, Geoffrey L. Laforte & Richard A. Shore - 2003 - Journal of Symbolic Logic 68 (2):551-579.
    Given two incomparable c.e. Turing degrees a and b, we show that there exists a c.e. degree c such that c = (a ⋃ c) ⋂ (b ⋃ c), a ⋃ c | b ⋃ c, and c < a ⋃ b.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  69
    On the definability of the double jump in the computably enumerable sets.Peter A. Cholak & Leo A. Harrington - 2002 - Journal of Mathematical Logic 2 (02):261-296.
    We show that the double jump is definable in the computably enumerable sets. Our main result is as follows: let [Formula: see text] is the Turing degree of a [Formula: see text] set J ≥T0″}. Let [Formula: see text] such that [Formula: see text] is upward closed in [Formula: see text]. Then there is an ℒ property [Formula: see text] such that [Formula: see text] if and only if there is an A where A ≡T F (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  17.  22
    Exact pairs for the ideal of the k-trivial sequences in the Turing degrees.George Barmpalias & Rod G. Downey - 2014 - Journal of Symbolic Logic 79 (3):676-692.
    TheK-trivial sets form an ideal in the Turing degrees, which is generated by its computably enumerable members and has an exact pair below the degree of the halting problem. The question of whether it has an exact pair in the c.e. degrees was first raised in [22, Question 4.2] and later in [25, Problem 5.5.8].We give a negative answer to this question. In fact, we show the following stronger statement in the c.e. degrees. There exists aK-trivial (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  18.  75
    Enumerations in computable structure theory.Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Annals of Pure and Applied Logic 136 (3):219-246.
    We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  19.  48
    A hierarchy for the plus cupping Turing degrees.Yong Wang & Angsheng Li - 2003 - Journal of Symbolic Logic 68 (3):972-988.
    We say that a computably enumerable (c. e.) degree a is plus-cupping, if for every c.e. degree x with $0 < x \leq a$ , there is a c. e. degree $y \not= 0'$ such that $x \vee y = 0/\'$ . We say that a is n-plus-cupping. if for every c. e. degree x, if $0 < x \leq a$ , then there is a $low_n$ c. e. degree 1 such that $x (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  20.  51
    Computable isomorphisms, degree spectra of relations, and Scott families.Bakhadyr Khoussainov & Richard A. Shore - 1998 - Annals of Pure and Applied Logic 93 (1-3):153-193.
    The spectrum of a relation on a computable structure is the set of Turing degrees of the image of R under all isomorphisms between and any other computable structure . The relation is intrinsically computably enumerable if its image under all such isomorphisms is c.e. We prove that any computable partially ordered set is isomorphic to the spectrum of an intrinsically c.e. relation on a computable structure. Moreover, the isomorphism can be constructed in such a way that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  21.  52
    Degree spectra of the successor relation of computable linear orderings.Jennifer Chubb, Andrey Frolov & Valentina Harizanov - 2009 - Archive for Mathematical Logic 48 (1):7-13.
    We establish that for every computably enumerable (c.e.) Turing degree b the upper cone of c.e. Turing degrees determined by b is the degree spectrum of the successor relation of some computable linear ordering. This follows from our main result, that for a large class of linear orderings the degree spectrum of the successor relation is closed upward in the c.e. Turing degrees.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  40
    Relative enumerability and 1-genericity.Wei Wang - 2011 - Journal of Symbolic Logic 76 (3):897 - 913.
    A set of natural numbers B is computably enumerable in and strictly above (or c.e.a. for short) another set C if C < T B and B is computably enumerable in C. A Turing degree b is c.e.a. c if b and c respectively contain B and C as above. In this paper, it is shown that if b is c.e.a. c then b is c.e.a. some 1-generic g.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  23.  85
    On Lachlan’s major sub-degree problem.S. Barry Cooper & Angsheng Li - 2008 - Archive for Mathematical Logic 47 (4):341-434.
    The Major Sub-degree Problem of A. H. Lachlan (first posed in 1967) has become a long-standing open question concerning the structure of the computably enumerable (c.e.) degrees. Its solution has important implications for Turing definability and for the ongoing programme of fully characterising the theory of the c.e. Turing degrees. A c.e. degree a is a major subdegree of a c.e. degree b > a if for any c.e. degree x, ${{\bf 0' (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  54
    Degrees of d. c. e. reals.Rod Downey, Guohua Wu & Xizhong Zheng - 2004 - Mathematical Logic Quarterly 50 (4-5):345-350.
    A real α is called a c. e. real if it is the halting probability of a prefix free Turing machine. Equivalently, α is c. e. if it is left computable in the sense that L = {q ∈ ℚ : q ≤ α} is a computably enumerable set. The natural field formed by the c. e. reals turns out to be the field formed by the collection of the d. c. e. reals, which are of the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  68
    On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  40
    On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the enumeration degrees (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  27.  59
    Degrees of Unsolvability of Continuous Functions.Joseph S. Miller - 2004 - Journal of Symbolic Logic 69 (2):555 - 584.
    We show that the Turing degrees are not sufficient to measure the complexity of continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We introduce the continuous degrees and prove that they are a proper extension of the Turing degrees and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing degrees non-total. Several fundamental results (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  28. Definability in the recursively enumerable degrees.André Nies, Richard A. Shore & Theodore A. Slaman - 1996 - Bulletin of Symbolic Logic 2 (4):392-404.
    §1. Introduction. Natural sets that can be enumerated by a computable function always seem to be either actually computable or of the same complexity as the Halting Problem, the complete r.e. set K. The obvious question, first posed in Post [1944] and since then called Post's Problem is then just whether there are r.e. sets which are neither computable nor complete, i.e., neither recursive nor of the same Turing degree as K?Let be the r.e. degrees, i.e., the r.e. (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  29.  40
    The complexity of central series in nilpotent computable groups.Barbara F. Csima & Reed Solomon - 2011 - Annals of Pure and Applied Logic 162 (8):667-678.
    The terms of the upper and lower central series of a nilpotent computable group have computably enumerable Turing degree. We show that the Turing degrees of these terms are independent even when restricted to groups which admit computable orders.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  90
    On the existence of a strong minimal pair.George Barmpalias, Mingzhong Cai, Steffen Lempp & Theodore A. Slaman - 2015 - Journal of Mathematical Logic 15 (1):1550003.
    We show that there is a strong minimal pair in the computably enumerable Turing degrees, i.e. a pair of nonzero c.e. degrees a and b such that a∩b = 0 and for any nonzero c.e. degree x ≤ a, b ∪ x ≥ a.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  22
    Lattice embeddings and array noncomputable degrees.Stephen M. Walk - 2004 - Mathematical Logic Quarterly 50 (3):219.
    We focus on a particular class of computably enumerable degrees, the array noncomputable degrees defined by Downey, Jockusch, and Stob, to answer questions related to lattice embeddings and definability in the partial ordering of c. e. degrees under Turing reducibility. We demonstrate that the latticeM5 cannot be embedded into the c. e. degrees below every array noncomputable degree, or even below every nonlow array noncomputable degree. As Downey and Shore have proved that M5 can be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  39
    A finite lattice without critical triple that cannot be embedded into the enumerable Turing degrees.Steffen Lempp & Manuel Lerman - 1997 - Annals of Pure and Applied Logic 87 (2):167-185.
    We exhibit a finite lattice without critical triple that cannot be embedded into the enumerable Turing degrees. Our method promises to lead to a full characterization of the finite lattices embeddable into the enumerable Turing degrees.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  33.  63
    Maximal contiguous degrees.Peter Cholak, Rod Downey & Stephen Walk - 2002 - Journal of Symbolic Logic 67 (1):409-437.
    A computably enumerable (c.e.) degree is a maximal contiguous degree if it is contiguous and no c.e. degree strictly above it is contiguous. We show that there are infinitely many maximal contiguous degrees. Since the contiguous degrees are definable, the class of maximal contiguous degrees provides the first example of a definable infinite anti-chain in the c.e. degrees. In addition, we show that the class of maximal contiguous degrees forms an automorphism base for the c.e. (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  36
    On Turing degrees of points in computable topology.Iraj Kalantari & Larry Welch - 2008 - Mathematical Logic Quarterly 54 (5):470-482.
    This paper continues our study of computable point-free topological spaces and the metamathematical points in them. For us, a point is the intersection of a sequence of basic open sets with compact and nested closures. We call such a sequence a sharp filter. A function fF from points to points is generated by a function F from basic open sets to basic open sets such that sharp filters map to sharp filters. We restrict our study to functions that have at (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  36
    Pa Relative to an Enumeration Oracle.G. O. H. Jun Le, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2023 - Journal of Symbolic Logic 88 (4):1497-1525.
    Recall that B is PA relative to A if B computes a member of every nonempty $\Pi ^0_1(A)$ class. This two-place relation is invariant under Turing equivalence and so can be thought of as a binary relation on Turing degrees. Miller and Soskova [23] introduced the notion of a $\Pi ^0_1$ class relative to an enumeration oracle A, which they called a $\Pi ^0_1{\left \langle {A}\right \rangle }$ class. We study the induced extension of the relation B is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  58
    Turing degrees of certain isomorphic images of computable relations.Valentina S. Harizanov - 1998 - Annals of Pure and Applied Logic 93 (1-3):103-113.
    A model is computable if its domain is a computable set and its relations and functions are uniformly computable. Let be a computable model and let R be an extra relation on the domain of . That is, R is not named in the language of . We define to be the set of Turing degrees of the images f under all isomorphisms f from to computable models. We investigate conditions on and R which are sufficient and necessary for (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  37.  56
    Computability Theory.S. Barry Cooper - 2003 - Chapman & Hall.
    Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, (...)
  38.  58
    Elementary differences between the degrees of unsolvability and degrees of compressibility.George Barmpalias - 2010 - Annals of Pure and Applied Logic 161 (7):923-934.
    Given two infinite binary sequences A,B we say that B can compress at least as well as A if the prefix-free Kolmogorov complexity relative to B of any binary string is at most as much as the prefix-free Kolmogorov complexity relative to A, modulo a constant. This relation, introduced in Nies [14] and denoted by A≤LKB, is a measure of relative compressing power of oracles, in the same way that Turing reducibility is a measure of relative information. The equivalence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Totally ω-computably enumerable degrees and bounding critical triples.Rod Downey, Noam Greenberg & Rebecca Weber - 2007 - Journal of Mathematical Logic 7 (2):145-171.
    We characterize the class of c.e. degrees that bound a critical triple as those degrees that compute a function that has no ω-c.e. approximation.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  40.  27
    A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41.  81
    A limit on relative genericity in the recursively enumerable sets.Steffen Lempp & Theodore A. Slaman - 1989 - Journal of Symbolic Logic 54 (2):376-395.
    Work in the setting of the recursively enumerable sets and their Turing degrees. A set X is low if X', its Turning jump, is recursive in $\varnothing'$ and high if X' computes $\varnothing''$ . Attempting to find a property between being low and being recursive, Bickford and Mills produced the following definition. W is deep, if for each recursively enumerable set A, the jump of $A \bigoplus W$ is recursive in the jump of A. We prove that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  12
    Effective Concept Classes of PAC and PACi Incomparable Degrees, Joins and Embedding of Degrees.Dodamgodage Gihanee M. Senadheera - 2023 - Bulletin of Symbolic Logic 29 (2):298-299.
    The Probably Approximately Correct (PAC) learning is a machine learning model introduced by Leslie Valiant in 1984. The PACi reducibility refers to the PAC reducibility independent of size and computation time. This reducibility in PAC learning resembles the reducibility in Turing computability. The ordering of concept classes under PAC reducibility is nonlinear, even when restricted to particular concrete examples.Due to the resemblance to Turing Reducibility, we suspected that there could be incomparable PACi and PAC degrees for the PACi (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  29
    Degree spectra of real closed fields.Russell Miller & Victor Ocasio González - 2019 - Archive for Mathematical Logic 58 (3-4):387-411.
    Several researchers have recently established that for every Turing degree \, the real closed field of all \-computable real numbers has spectrum \. We investigate the spectra of real closed fields further, focusing first on subfields of the field \ of computable real numbers, then on archimedean real closed fields more generally, and finally on non-archimedean real closed fields. For each noncomputable, computably enumerable set C, we produce a real closed C-computable subfield of \ with no (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  44.  26
    On relative enumerability of Turing degrees.Shamil Ishmukhametov - 2000 - Archive for Mathematical Logic 39 (3):145-154.
    Let d be a Turing degree, R[d] and Q[d] denote respectively classes of recursively enumerable (r.e.) and all degrees in which d is relatively enumerable. We proved in Ishmukhametov [1999] that there is a degree d containing differences of r.e.sets (briefly, d.r.e.degree) such that R[d] possess a least elementm $>$ 0. Now we show the existence of a d.r.e. d such that R[d] has no a least element. We prove also that for any REA- (...) d below 0 $'$ the class Q[d] cannot have a least element and more generally is not bounded below by a non-zero degree, except in the trivial cases. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  20
    (1 other version)The computably enumerable degrees are locally non-cappable.Matthew B. Giorgi - 2003 - Archive for Mathematical Logic -1 (1):1-1.
  46.  18
    On New Notions of Algorithmic Dimension, Immunity, and Medvedev Degree.David J. Webb - 2022 - Bulletin of Symbolic Logic 28 (4):532-533.
    We prove various results connected together by the common thread of computability theory.First, we investigate a new notion of algorithmic dimension, the inescapable dimension, which lies between the effective Hausdorff and packing dimensions. We also study its generalizations, obtaining an embedding of the Turing degrees into notions of dimension.We then investigate a new notion of computability theoretic immunity that arose in the course of the previous study, that of a set of natural numbers with no co-enumerable subsets. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  26
    Interpreting N in the computably enumerable weak truth table degrees.André Nies - 2001 - Annals of Pure and Applied Logic 107 (1-3):35-48.
    We give a first-order coding without parameters of a copy of in the computably enumerable weak truth table degrees. As a tool, we develop a theory of parameter definable subsets.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48.  19
    Coarse computability, the density metric, Hausdorff distances between Turing degrees, perfect trees, and reverse mathematics.Denis R. Hirschfeldt, Carl G. Jockusch & Paul E. Schupp - 2023 - Journal of Mathematical Logic 24 (2).
    For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  29
    On definable filters in computably enumerable degrees.Wei Wang & Decheng Ding - 2007 - Annals of Pure and Applied Logic 147 (1):71-83.
  50.  44
    Σ5-completeness of index sets arising from the recursively enumerable Turing degrees.Michael A. Jahn - 1996 - Annals of Pure and Applied Logic 79 (2):109-137.
    We employ techniques related to Lempp and Lerman's “iterated trees of strategies” to directly measure a Σ5-predicate and use this in showing the index set of the cuppable r.e. sets to be Σ5-complete. We also show how certain technical devices arise naturally out of the iterated-trees context, in particular, links arise as manifestations of a generalized notion of “stage”.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 963