Results for 'Enumeration reducibility'

944 found
Order:
  1.  27
    Strong Enumeration Reducibilities.Roland Sh Omanadze & Andrea Sorbi - 2006 - Archive for Mathematical Logic 45 (7):869-912.
    We investigate strong versions of enumeration reducibility, the most important one being s-reducibility. We prove that every countable distributive lattice is embeddable into the local structure $L(\mathfrak D_s)$ of the s-degrees. However, $L(\mathfrak D_s)$ is not distributive. We show that on $\Delta^{0}_{2}$ sets s-reducibility coincides with its finite branch version; the same holds of e-reducibility. We prove some density results for $L(\mathfrak D_s)$ . In particular $L(\mathfrak D_s)$ is upwards dense. Among the results about reducibilities (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  2.  36
    Bounded enumeration reducibility and its degree structure.Daniele Marsibilio & Andrea Sorbi - 2012 - Archive for Mathematical Logic 51 (1-2):163-186.
    We study a strong enumeration reducibility, called bounded enumeration reducibility and denoted by ≤be, which is a natural extension of s-reducibility ≤s. We show that ≤s, ≤be, and enumeration reducibility do not coincide on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} –sets, and the structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{\mathcal{D}_{\rm be}}}$$\end{document} of the be-degrees is not elementarily equivalent to the structure of the s-degrees. We (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  44
    How Enumeration Reducibility Yields Extended Harrington Non-Splitting.Mariya I. Soskova & S. Barry Cooper - 2008 - Journal of Symbolic Logic 73 (2):634 - 655.
  4.  20
    (1 other version)Enumeration reducibility and partial degrees.John Case - 1971 - Annals of Mathematical Logic 2 (4):419-439.
  5.  39
    On Nondeterminism, Enumeration Reducibility and Polynomial Bounds.Kate Copestake - 1997 - Mathematical Logic Quarterly 43 (3):287-310.
    Enumeration reducibility is a notion of relative computability between sets of natural numbers where only positive information about the sets is used or produced. Extending e‐reducibility to partial functions characterises relative computability between partial functions. We define a polynomial time enumeration reducibility that retains the character of enumeration reducibility and show that it is equivalent to conjunctive non‐deterministic polynomial time reducibility. We define the polynomial time e‐degrees as the equivalence classes under this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  20
    (1 other version)Enumeration Reducibility Using Bounded Information: Counting Minimal Covers.S. Barry Cooper - 1987 - Mathematical Logic Quarterly 33 (6):537-560.
    Direct download  
     
    Export citation  
     
    Bookmark   13 citations  
  7.  42
    John Case. Enumeration reducibility and partial degrees. Annals of mathematical logic, vol. 2 no. 4 , pp. 419–439.Leonard P. Sasso - 1974 - Journal of Symbolic Logic 39 (3):605-606.
  8.  37
    Generalizations of enumeration reducibility using recursive infinitary propositional sentences.C. J. Ash - 1992 - Annals of Pure and Applied Logic 58 (3):173-184.
    Ash, C.J., Generalizations of enumeration reducibility using recursive infinitary propositional sentences, Annals of Pure and Applied Logic 58 173–184. We consider the relation between sets A and B that for every set S if A is Σ0α in S then B is Σ0β in S. We show that this is equivalent to the condition that B is definable from A in a particular way involving recursive infinitary propositional sentences. When α = β = 1, this condition is that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  18
    On restricted forms of enumeration reducibility.Phil Watson - 1990 - Annals of Pure and Applied Logic 49 (1):75-96.
  10.  46
    Enumerators of lambda terms are reducing constructively.Henk Barendregt - 1995 - Annals of Pure and Applied Logic 73 (1):3-9.
    A closed λ-term E is called an enumerator if M ε /gL/dg /gTn ε N E/drn/dl = β M. Here Λ° is the set of closed λ-terms, N is the set of natural numbers and the /drn/dl are the Church numerals λfx./tfnx. Such an E is called reducing if moreover M ε /gL/dg /gTn ε N E/drn/dl /a/gb M. In 1983 I conjectured that every enumerator is reducing. An ingenious recursion theoretic proof of this conjecture by Statman is presented in (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  36
    Computably enumerable sets and quasi-reducibility.R. Downey, G. LaForte & A. Nies - 1998 - Annals of Pure and Applied Logic 95 (1-3):1-35.
    We consider the computably enumerable sets under the relation of Q-reducibility. We first give several results comparing the upper semilattice of c.e. Q-degrees, RQ, Q, under this reducibility with the more familiar structure of the c.e. Turing degrees. In our final section, we use coding methods to show that the elementary theory of RQ, Q is undecidable.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  12.  13
    (1 other version)Strong Reducibilities of Enumerations and Partial Enumerated Algebras.A. Orlicki - 1988 - Mathematical Logic Quarterly 34 (2):143-162.
    Direct download  
     
    Export citation  
     
    Bookmark  
  13.  38
    On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  14.  10
    (1 other version)Correction to “Strong Reducibilities of Enumerations and Partial Enumerated Algebras”.Andrzej Orlicki - 1989 - Mathematical Logic Quarterly 35 (1):95-95.
    Direct download  
     
    Export citation  
     
    Bookmark  
  15.  73
    Goodness in the enumeration and singleton degrees.Charles M. Harris - 2010 - Archive for Mathematical Logic 49 (6):673-691.
    We investigate and extend the notion of a good approximation with respect to the enumeration ${({\mathcal D}_{\rm e})}$ and singleton ${({\mathcal D}_{\rm s})}$ degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings ${\iota_s}$ and ${\hat{\iota}_s}$ of, respectively, ${{\mathcal D}_{\rm e}}$ and ${{\mathcal D}_{\rm T}}$ (the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  16.  70
    Badness and jump inversion in the enumeration degrees.Charles M. Harris - 2012 - Archive for Mathematical Logic 51 (3-4):373-406.
    This paper continues the investigation into the relationship between good approximations and jump inversion initiated by Griffith. Firstly it is shown that there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^{0}_{2}}$$\end{document} set A whose enumeration degree a is bad—i.e. such that no set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \in a}$$\end{document} is good approximable—and whose complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{A}}$$\end{document} has lowest possible jump, in other (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17.  22
    Addendum to “computably enumerable sets and quasi-reducibility”.R. Downey, G. LaForte & A. Nies - 1999 - Annals of Pure and Applied Logic 98 (1-3):295.
  18.  15
    (1 other version)On Constructively Non‐Morphisms of Enumerated Sets and Constructive Non‐Reducibility of Enumerations.Andrzej Orlicki - 1987 - Mathematical Logic Quarterly 33 (6):485-496.
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  49
    A jump inversion theorem for the enumeration jump.I. N. Soskov - 2000 - Archive for Mathematical Logic 39 (6):417-437.
    . We prove a jump inversion theorem for the enumeration jump and a minimal pair type theorem for the enumeration reducibilty. As an application some results of Selman, Case and Ash are obtained.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  20. Computably enumerable equivalence relations.Su Gao & Peter Gerdes - 2001 - Studia Logica 67 (1):27-59.
    We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  21.  97
    Enumerations of the Kolmogorov Function.Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrej Muchnik, Frank Stephan & Leen Torenvliet - 2006 - Journal of Symbolic Logic 71 (2):501 - 528.
    A recursive enumerator for a function h is an algorithm f which enumerates for an input x finitely many elements including h(x), f is a k(n)-enumerator if for every input x of length n, h(x) is among the first k(n) elements enumerated by f. If there is a k(n)-enumerator for h then h is called k(n)-enumerable. We also consider enumerators which are only A-recursive for some oracle A. We determine exactly how hard it is to enumerate the Kolmogorov function, which (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  37
    Recursively Enumerable Equivalence Relations Modulo Finite Differences.André Nies - 1994 - Mathematical Logic Quarterly 40 (4):490-518.
    We investigate the upper semilattice Eq* of recursively enumerable equivalence relations modulo finite differences. Several natural subclasses are shown to be first-order definable in Eq*. Building on this we define a copy of the structure of recursively enumerable many-one degrees in Eq*, thereby showing that Th has the same computational complexity as the true first-order arithmetic.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  23.  34
    Computably Enumerable Reals and Uniformly Presentable Ideals.S. A. Terwijn & R. Downey - 2002 - Mathematical Logic Quarterly 48 (S1):29-40.
    We study the relationship between a computably enumerable real and its presentations. A set A presents a computably enumerable real α if A is a computably enumerable prefix-free set of strings such that equation image. Note that equation image is precisely the measure of the set of reals that have a string in A as an initial segment. So we will simply abbreviate equation image by μ. It is known that whenever A so presents α then A ≤wttα, where ≤wtt (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  97
    Branching in the $${\Sigma^0_2}$$ -enumeration degrees: a new perspective. [REVIEW]Maria L. Affatato, Thomas F. Kent & Andrea Sorbi - 2008 - Archive for Mathematical Logic 47 (3):221-231.
    We give an alternative and more informative proof that every incomplete ${\Sigma^{0}_{2}}$ -enumeration degree is the meet of two incomparable ${\Sigma^{0}_{2}}$ -degrees, which allows us to show the stronger result that for every incomplete ${\Sigma^{0}_{2}}$ -enumeration degree a, there exist enumeration degrees x 1 and x 2 such that a, x 1, x 2 are incomparable, and for all b ≤ a, b = (b ∨ x 1 ) ∧ (b ∨ x 2 ).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  23
    Limit lemmas and jump inversion in the enumeration degrees.Evan J. Griffiths - 2003 - Archive for Mathematical Logic 42 (6):553-562.
    We show that there is a limit lemma for enumeration reducibility to 0 e ', analogous to the Shoenfield Limit Lemma in the Turing degrees, which relativises for total enumeration degrees. Using this and `good approximations' we prove a jump inversion result: for any set W with a good approximation and any set X< e W such that W≤ e X' there is a set A such that X≤ e A< e W and A'=W'. (All jumps are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  26.  34
    Every incomplete computably enumerable truth-table degree is branching.Peter A. Fejer & Richard A. Shore - 2001 - Archive for Mathematical Logic 40 (2):113-123.
    If r is a reducibility between sets of numbers, a natural question to ask about the structure ? r of the r-degrees containing computably enumerable sets is whether every element not equal to the greatest one is branching (i.e., the meet of two elements strictly above it). For the commonly studied reducibilities, the answer to this question is known except for the case of truth-table (tt) reducibility. In this paper, we answer the question in the tt case by (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  20
    Weakly precomplete computably enumerable equivalence relations.Serikzhan Badaev & Andrea Sorbi - 2016 - Mathematical Logic Quarterly 62 (1-2):111-127.
    Using computable reducibility ⩽ on equivalence relations, we investigate weakly precomplete ceers (a “ceer” is a computably enumerable equivalence relation on the natural numbers), and we compare their class with the more restricted class of precomplete ceers. We show that there are infinitely many isomorphism types of universal (in fact uniformly finitely precomplete) weakly precomplete ceers, that are not precomplete; and there are infinitely many isomorphism types of non‐universal weakly precomplete ceers. Whereas the Visser space of a precomplete ceer (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  26
    Embeddings in the Strong Reducibilities Between 1 and npm.Phil Watson - 1997 - Mathematical Logic Quarterly 43 (4):559-568.
    We consider the strongest forms of enumeration reducibility, those that occur between 1- and npm-reducibility inclusive. By defining two new reducibilities which are counterparts to 1- and i-reducibility, respectively, in the same way that nm- and npm-reducibility are counterparts to m- and pm-reducibility, respectively, we bring out the structure of the strong reducibilities. By further restricting n1- and nm-reducibility we are able to define infinite families of reducibilities which isomorphically embed the r. e. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  29.  64
    Strong reducibility of partial numberings.Dieter Spreen - 2005 - Archive for Mathematical Logic 44 (2):209-217.
    A strong reducibility relation between partial numberings is introduced which is such that the reduction function transfers exactly the numbers which are indices under the numbering to be reduced into corresponding indices of the other numbering. The degrees of partial numberings of a given set with respect to this relation form an upper semilattice.In addition, Ershov’s completion construction for total numberings is extended to the partial case: every partially numbered set can be embedded in a set which results from (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30.  23
    Enumeration 1-Genericity in the Local Enumeration Degrees. [REVIEW]Liliana Badillo, Charles M. Harris & Mariya I. Soskova - 2018 - Notre Dame Journal of Formal Logic 59 (4):461-489.
    We discuss a notion of forcing that characterizes enumeration 1-genericity, and we investigate the immunity, lowness, and quasiminimality properties of enumeration 1-generic sets and their degrees. We construct an enumeration operator Δ such that, for any A, the set ΔA is enumeration 1-generic and has the same jump complexity as A. We deduce from this and other recent results from the literature that not only does every degree a bound an enumeration 1-generic degree b such (...) 1-generic degree, hence proving that the class of 1-generic degrees is properly subsumed by the class of enumeration 1-generic degrees. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  49
    Effectively closed sets and enumerations.Paul Brodhead & Douglas Cenzer - 2008 - Archive for Mathematical Logic 46 (7-8):565-582.
    An effectively closed set, or ${\Pi^{0}_{1}}$ class, may viewed as the set of infinite paths through a computable tree. A numbering, or enumeration, is a map from ω onto a countable collection of objects. One numbering is reducible to another if equality holds after the second is composed with a computable function. Many commonly used numberings of ${\Pi^{0}_{1}}$ classes are shown to be mutually reducible via a computable permutation. Computable injective numberings are given for the family of ${\Pi^{0}_{1}}$ classes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  22
    Post's Problem for Reducibilities of Bounded Complexity.Valeriy K. Bulitko - 2002 - Mathematical Logic Quarterly 48 (3):367-373.
    In this paper we consider the we known method by E. Post of solving the problem of construction of recursively enumerable sets that have a degree intermediate between the degrees of recursive and complete sets with respect to a given reducibility. Post considered reducibilities ≤m, ≤btt, ≤tt and ≤T and solved the problem for al of them except ≤T. Here we extend Post's original method of construction of incomplete sets onto two wide classes of sub-Turing reducibilities what were studying (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  33.  51
    Computable Reducibility of Equivalence Relations and an Effective Jump Operator.John D. Clemens, Samuel Coskey & Gianni Krakoff - forthcoming - Journal of Symbolic Logic:1-22.
    We introduce the computable FS-jump, an analog of the classical Friedman–Stanley jump in the context of equivalence relations on the natural numbers. We prove that the computable FS-jump is proper with respect to computable reducibility. We then study the effect of the computable FS-jump on computably enumerable equivalence relations (ceers).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  24
    On existence of complete sets for bounded reducibilities.Valeriy Bulitko & Vadim Bulitko - 2003 - Mathematical Logic Quarterly 49 (6):567-575.
    Classical reducibilities have complete sets U that any recursively enumerable set can be reduced to U. This paper investigates existence of complete sets for reducibilities with limited oracle access. Three characteristics of classical complete sets are selected and a natural hierarchy of the bounds on oracle access is built. As the bounds become stricter, complete sets lose certain characteristics and eventually vanish.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. (1 other version)Definability, automorphisms, and dynamic properties of computably enumerable sets.Leo Harrington & Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (2):199-213.
    We announce and explain recent results on the computably enumerable (c.e.) sets, especially their definability properties (as sets in the spirit of Cantor), their automorphisms (in the spirit of Felix Klein's Erlanger Programm), their dynamic properties, expressed in terms of how quickly elements enter them relative to elements entering other sets, and the Martin Invariance Conjecture on their Turing degrees, i.e., their information content with respect to relative computability (Turing reducibility).
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  36.  64
    Contiguity and Distributivity in the Enumerable Turing Degrees.Rodney G. Downey & Steffen Lempp - 1997 - Journal of Symbolic Logic 62 (4):1215-1240.
    We prove that a enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no $m$-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  37.  28
    On the Degree Structure of Equivalence Relations Under Computable Reducibility.Keng Meng Ng & Hongyuan Yu - 2019 - Notre Dame Journal of Formal Logic 60 (4):733-761.
    We study the degree structure of the ω-c.e., n-c.e., and Π10 equivalence relations under the computable many-one reducibility. In particular, we investigate for each of these classes of degrees the most basic questions about the structure of the partial order. We prove the existence of the greatest element for the ω-c.e. and n-computably enumerable equivalence relations. We provide computable enumerations of the degrees of ω-c.e., n-c.e., and Π10 equivalence relations. We prove that for all the degree classes considered, upward (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  38.  53
    The computable Lipschitz degrees of computably enumerable sets are not dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
    The computable Lipschitz reducibility was introduced by Downey, Hirschfeldt and LaForte under the name of strong weak truth-table reducibility [6]). This reducibility measures both the relative randomness and the relative computational power of real numbers. This paper proves that the computable Lipschitz degrees of computably enumerable sets are not dense. An immediate corollary is that the Solovay degrees of strongly c.e. reals are not dense. There are similarities to Barmpalias and Lewis’ proof that the identity bounded Turing (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39.  18
    The complexity of index sets of classes of computably enumerable equivalence relations.Uri Andrews & Andrea Sorbi - 2016 - Journal of Symbolic Logic 81 (4):1375-1395.
    Let$ \le _c $be computable the reducibility on computably enumerable equivalence relations. We show that for every ceerRwith infinitely many equivalence classes, the index sets$\left\{ {i:R_i \le _c R} \right\}$,$\left\{ {i:R_i \ge _c R} \right\}$, and$\left\{ {i:R_i \equiv _c R} \right\}$are${\rm{\Sigma }}_3^0$complete, whereas in caseRhas only finitely many equivalence classes, we have that$\left\{ {i:R_i \le _c R} \right\}$is${\rm{\Pi }}_2^0$complete, and$\left\{ {i:R \ge _c R} \right\}$ is${\rm{\Sigma }}_2^0$complete. Next, solving an open problem from [1], we prove that the index set (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  28
    On isomorphism classes of computably enumerable equivalence relations.Uri Andrews & Serikzhan A. Badaev - 2020 - Journal of Symbolic Logic 85 (1):61-86.
    We examine how degrees of computably enumerable equivalence relations under computable reduction break down into isomorphism classes. Two ceers are isomorphic if there is a computable permutation of ω which reduces one to the other. As a method of focusing on nontrivial differences in isomorphism classes, we give special attention to weakly precomplete ceers. For any degree, we consider the number of isomorphism types contained in the degree and the number of isomorphism types of weakly precomplete ceers contained in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  41.  9
    Minimal weak truth table degrees and computably enumerable Turing degrees.R. G. Downey - 2020 - Providence, RI: American Mathematical Society. Edited by Keng Meng Ng & Reed Solomon.
    Informal construction -- Formal construction -- Limiting results.
    Direct download  
     
    Export citation  
     
    Bookmark  
  42.  22
    A New Reducibility between Turing‐ and wtt‐Reducibility.Sui Yuefei - 1994 - Mathematical Logic Quarterly 40 (1):106-110.
    The project was partially supported by a NSF grant of China. The author was grateful to Professor S. Lempp for his encouragement and suggestion while the author was visiting the Department of Mathematics at the University of Wisconsin.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  43.  42
    1-reducibility inside an m-degree with maximal set.E. Herrmann - 1992 - Journal of Symbolic Logic 57 (3):1046-1056.
    The structure of the l-degrees included in an m-degree with a maximal set together with the l-reducibility relation is characterized. For this a special sublattice of the lattice of recursively enumerable sets under the set-inclusion is used.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  34
    Separations by Random Oracles and "Almost" Classes for Generalized Reducibilities.Y. Wang & W. Merkle - 2001 - Mathematical Logic Quarterly 47 (2):249-270.
    Let ≤r and ≤sbe two binary relations on 2ℕ which are meant as reducibilities. Let both relations be closed under finite variation and consider the uniform distribution on 2ℕ, which is obtained by choosing elements of 2ℕ by independent tosses of a fair coin.Then we might ask for the probability that the lower ≤r-cone of a randomly chosen set X, that is, the class of all sets A with A ≤rX, differs from the lower ≤s-cone of X. By c osure (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  19
    On p-reducibility of numerations.A. N. Degtev - 1993 - Annals of Pure and Applied Logic 63 (1):57-60.
    Degtev, A.N., On p-reducibility of numerations, Annals of Pure and Applied Logic 63 57–60. If α and β are two numerations of a set S, then αpβ if there exists a total recursive function f such that [s ε S][α-1=[x:[y ε Df][Dyβ-1]]], where Dn is a finite set with canonical number n. It is proved that if α and β are two computable numerations of some family of recursively enumerable sets A and αpβ, then there is a computable numeration, (...))
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  46.  38
    The Settling-Time Reducibility Ordering.Barbara F. Csima & Richard A. Shore - 2007 - Journal of Symbolic Logic 72 (3):1055 - 1071.
    To each computable enumerable (c.e.) set A with a particular enumeration {As}s∈ω, there is associated a settling function mA(x), where mA(x) is the last stage when a number less than or equal to x was enumerated into A. One c.e. set A is settling time dominated by another set B (B >st A) if for every computable function f, for all but finitely many x, mB(x) > f(m₄(x)). This settling-time ordering, which is a natural extension to an ordering of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  30
    On the Structure of Computable Reducibility on Equivalence Relations of Natural Numbers.Uri Andrews, Daniel F. Belin & Luca San Mauro - 2023 - Journal of Symbolic Logic 88 (3):1038-1063.
    We examine the degree structure $\operatorname {\mathrm {\mathbf {ER}}}$ of equivalence relations on $\omega $ under computable reducibility. We examine when pairs of degrees have a least upper bound. In particular, we show that sufficiently incomparable pairs of degrees do not have a least upper bound but that some incomparable degrees do, and we characterize the degrees which have a least upper bound with every finite equivalence relation. We show that the natural classes of finite, light, and dark degrees (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  47
    On restrictions on transformational grammars reducing the generative power.Theo Janssen, Gerard Kok & Lambert Meertens - 1977 - Linguistics and Philosophy 1 (1):111 - 118.
    Various restrictions on transformational grammars have been investigated in order to reduce their generative power from recursively enumerable languages to recursive languages.It will be shown that any restriction on transformational grammars defining a recursively enumerable subset of the set of all transformational grammars, is either too weak (in the sense that there does not exist a general decision procedure for all languages generated under such a restriction) or too strong (in the sense that there exists a recursive language that cannot (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  49. Preface to Forenames of God: Enumerations of Ernesto Laclau toward a Political Theology of Algorithms.Virgil W. Brower - 2021 - Internationales Jahrbuch Für Medienphilosophie 7 (1):243-251.
    Perhaps nowhere better than, "On the Names of God," can readers discern Laclau's appreciation of theology, specifically, negative theology, and the radical potencies of political theology. // It is Laclau's close attention to Eckhart and Dionysius in this essay that reveals a core theological strategy to be learned by populist reasons or social logics and applied in politics or democracies to come. // This mode of algorithmically informed negative political theology is not mathematically inert. It aspires to relate a fraction (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  15
    $$sQ_1$$ -degrees of computably enumerable sets.Roland Sh Omanadze - 2023 - Archive for Mathematical Logic 62 (3):401-417.
    We show that the _sQ_-degree of a hypersimple set includes an infinite collection of \(sQ_1\) -degrees linearly ordered under \(\le _{sQ_1}\) with order type of the integers and each c.e. set in these _sQ_-degrees is a hypersimple set. Also, we prove that there exist two c.e. sets having no least upper bound on the \(sQ_1\) -reducibility ordering. We show that the c.e. \(sQ_1\) -degrees are not dense and if _a_ is a c.e. \(sQ_1\) -degree such that \(o_{sQ_1}, then there (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 944