Results for 'Models of Peano arithmetic'

958 found
Order:
  1.  53
    A model of peano arithmetic with no elementary end extension.George Mills - 1978 - Journal of Symbolic Logic 43 (3):563-567.
    We construct a model of Peano arithmetic in an uncountable language which has no elementary end extension. This answers a question of Gaifman and contrasts with the well-known theorem of MacDowell and Specker which states that every model of Peano arithmetic in a countable language has an elementary end extension. The construction employs forcing in a nonstandard model.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  54
    Saturated models of peano arithmetic.J. F. Pabion - 1982 - Journal of Symbolic Logic 47 (3):625-637.
    We study reducts of Peano arithmetic for which conditions of saturation imply the corresponding conditions for the whole model. It is shown that very weak reducts (like pure order) have such a property for κ-saturation in every κ ≥ ω 1 . In contrast, other reducts do the job for ω and not for $\kappa > \omega_1$ . This solves negatively a conjecture of Chang.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  3.  16
    The Structure of Models of Peano Arithmetic.Roman Kossak & James Schmerl - 2006 - Oxford, England: Clarendon Press.
    Aimed at graduate students, research logicians and mathematicians, this much-awaited text covers over 40 years of work on relative classification theory for nonstandard models of arithmetic. The book covers basic isomorphism invariants: families of type realized in a model, lattices of elementary substructures and automorphism groups.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  4. Nonstandard Models of Peano Arithmetic.S. Kochen & Saul A. Kripke - 1982 - L’Enseignement Mathematique (3-4):211-231.
     
    Export citation  
     
    Bookmark   1 citation  
  5.  74
    On interstices of countable arithmetically saturated models of Peano arithmetic.Nicholas Bamber & Henryk Kotlarski - 1997 - Mathematical Logic Quarterly 43 (4):525-540.
    We give some information about the action of Aut on M, where M is a countable arithmetically saturated model of Peano Arithmetic. We concentrate on analogues of moving gaps and covering gaps inside M.
    Direct download  
     
    Export citation  
     
    Bookmark   14 citations  
  6.  34
    Enayat models of peano arithmetic.Athar Abdul-Quader - 2018 - Journal of Symbolic Logic 83 (4):1501-1511.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  25
    Illusory models of peano arithmetic.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Symbolic Logic 81 (3):1163-1175.
    By using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a modelMof PA. We say a modelMof PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane ifM⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane modelNof PA. We firstly show thatMis heterodox if and only if it is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  32
    Infinite substructure lattices of models of Peano Arithmetic.James H. Schmerl - 2010 - Journal of Symbolic Logic 75 (4):1366-1382.
    Bounded lattices (that is lattices that are both lower bounded and upper bounded) form a large class of lattices that include all distributive lattices, many nondistributive finite lattices such as the pentagon lattice N₅, and all lattices in any variety generated by a finite bounded lattice. Extending a theorem of Paris for distributive lattices, we prove that if L is an ℵ₀-algebraic bounded lattice, then every countable nonstandard model ������ of Peano Arithmetic has a cofinal elementary extension ������ (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  31
    Elementary Cuts in Saturated Models of Peano Arithmetic.James H. Schmerl - 2012 - Notre Dame Journal of Formal Logic 53 (1):1-13.
    A model $\mathscr{M} = (M,+,\times, 0,1,<)$ of Peano Arithmetic $({\sf PA})$ is boundedly saturated if and only if it has a saturated elementary end extension $\mathscr{N}$. The ordertypes of boundedly saturated models of $({\sf PA})$ are characterized and the number of models having these ordertypes is determined. Pairs $(\mathscr{N},M)$, where $\mathscr{M} \prec_{\sf end} \mathscr{N} \models({\sf PA})$ for saturated $\mathscr{N}$, and their theories are investigated. One result is: If $\mathscr{N}$ is a $\kappa$-saturated model of $({\sf PA})$ (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  22
    A standard model of Peano Arithmetic with no conservative elementary extension.Ali Enayat - 2008 - Annals of Pure and Applied Logic 156 (2):308-318.
    The principal result of this paper answers a long-standing question in the model theory of arithmetic [R. Kossak, J. Schmerl, The Structure of Models of Peano Arithmetic, Oxford University Press, 2006, Question 7] by showing that there exists an uncountable arithmetically closed family of subsets of the set ω of natural numbers such that the expansion of the standard model of Peano arithmetic has no conservative elementary extension, i.e., for any elementary extension of , (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  11.  27
    On non-standard models of Peano Arithmetic.Laureano Luna - 2008 - The Reasoner 2:2.
    In response to Bhupinder Singh Anand''s article CAN WE REALLY FALSIFY TRUTH BY DICTAT? in THE REASONER II, 1, January 2008,that denies the existence of nonstandard models of Peano Arithmetic, we prove from Compactness the existence of such models.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  12.  17
    CP‐generic expansions of models of Peano Arithmetic.Athar Abdul-Quader & James H. Schmerl - 2022 - Mathematical Logic Quarterly 68 (2):171-177.
    We study notions of genericity in models of, inspired by lines of inquiry initiated by Chatzidakis and Pillay and continued by Dolich, Miller and Steinhorn in general model‐theoretic contexts. These papers studied the theories obtained by adding a “random” predicate to a class of structures. Chatzidakis and Pillay axiomatized the theories obtained in this way. In this article, we look at the subsets of models of which satisfy the axiomatization given by Chatzidakis and Pillay; we refer to these (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  61
    Real closed fields and models of Peano arithmetic.P. D'Aquino, J. F. Knight & S. Starchenko - 2010 - Journal of Symbolic Logic 75 (1):1-11.
    Shepherdson [14] showed that for a discrete ordered ring I, I is a model of IOpen iff I is an integer part of a real closed ordered field. In this paper, we consider integer parts satisfying PA. We show that if a real closed ordered field R has an integer part I that is a nonstandard model of PA (or even IΣ₄), then R must be recursively saturated. In particular, the real closure of I, RC (I), is recursively saturated. We (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  14.  16
    Automorphism Groups of Saturated Models of Peano Arithmetic.Ermek S. Nurkhaidarov & James H. Schmerl - 2014 - Journal of Symbolic Logic 79 (2):561-584.
    Letκbe the cardinality of some saturated model of Peano Arithmetic. There is a set of${2^{{\aleph _0}}}$saturated models of PA, each having cardinalityκ, such that wheneverMandNare two distinct models from this set, then Aut(${\cal M}$) ≇ Aut ($${\cal N}$$).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  38
    On expandability of models of Peano arithmetic. II.Roman Murawski - 1976 - Studia Logica 35 (4):421-431.
  16.  10
    Substructure lattices and almost minimal end extensions of models of Peano arithmetic.James H. Schmerl - 2004 - Mathematical Logic Quarterly 50 (6):533-539.
    This paper concerns intermediate structure lattices Lt, where [MATHEMATICAL SCRIPT CAPITAL N] is an almost minimal elementary end extension of the model ℳ of Peano Arithmetic. For the purposes of this abstract only, let us say that ℳ attains L if L ≅ Lt for some almost minimal elementary end extension of [MATHEMATICAL SCRIPT CAPITAL N]. If T is a completion of PA and L is a finite lattice, then: If some model of T attains L, then every (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  55
    On expandability of models of peano arithmetic to models of the alternative set theory.Athanassios Tzouvaras - 1992 - Journal of Symbolic Logic 57 (2):452-460.
    We give a sufficient condition for a countable model M of PA to be expandable to an ω-model of AST with absolute Ω-orderings. The condition is in terms of saturation schemes or, equivalently, in terms of the ability of the model to code sequences which have some kind of definition in (M, ω). We also show that a weaker scheme of saturation leads to the existence of wellorderings of the model with nice properties. Finally, we answer affirmatively the question of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  18.  34
    Expanding the additive reduct of a model of Peano arithmetic.Masahiko Murakami & Akito Tsuboi - 2003 - Mathematical Logic Quarterly 49 (4):363-368.
    Let M be a model of first order Peano arithmetic and I an initial segment of M that is closed under multiplication. LetM0 be the {0, 1,+}-reduct ofM. We show that there is another model N of PA that is also an expansion of M0 such that a · Ma = a · Na if and only if a ∈ I for all a ∈ M.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  23
    Interstitial and pseudo gaps in models of Peano Arithmetic.Ermek S. Nurkhaidarov - 2010 - Mathematical Logic Quarterly 56 (2):198-204.
    In this paper we study the automorphism groups of models of Peano Arithmetic. Kossak, Kotlarski, and Schmerl [9] shows that the stabilizer of an unbounded element a of a countable recursively saturated model of Peano Arithmetic M is a maximal subgroup of Aut if and only if the type of a is selective. We extend this result by showing that if M is a countable arithmetically saturated model of Peano Arithmetic, Ω ⊂ M (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  24
    Self-embeddings of Models of Peano Arithmetic.Saeideh Bahrami - 2019 - Bulletin of Symbolic Logic 25 (2):217-218.
  21.  30
    Pointwise definable substructures of models of Peano arithmetic.Roman Murawski - 1988 - Notre Dame Journal of Formal Logic 29 (3):295-308.
  22.  16
    (1 other version)Automorphism Groups of Countable Arithmetically Saturated Models of Peano Arithmetic.James H. Schmerl - 2015 - Journal of Symbolic Logic 80 (4):1411-1434.
    If${\cal M},{\cal N}$are countable, arithmetically saturated models of Peano Arithmetic and${\rm{Aut}}\left( {\cal M} \right) \cong {\rm{Aut}}\left( {\cal N} \right)$, then the Turing-jumps of${\rm{Th}}\left( {\cal M} \right)$and${\rm{Th}}\left( {\cal N} \right)$are recursively equivalent.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23. RETRACTED ARTICLE: The Twin Primes Conjecture is True in the Standard Model of Peano Arithmetic: Applications of Rasiowa–Sikorski Lemma in Arithmetic (I).Janusz Czelakowski - 2023 - Studia Logica 111 (2):357-358.
    The paper is concerned with the old conjecture that there are infinitely many twin primes. In the paper we show that this conjecture is true, that is, it is true in the standard model of arithmetic. The proof is based on Rasiowa–Sikorski Lemma. The key role are played by the derived notion of a Rasiowa–Sikorski set and the method of forcing adjusted to arbitrary first–order languages. This approach was developed in the papers Czelakowski [ 4, 5 ]. The central (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  33
    Nonstandard models that are definable in models of Peano Arithmetic.Kazuma Ikeda & Akito Tsuboi - 2007 - Mathematical Logic Quarterly 53 (1):27-37.
    In this paper, we investigate definable models of Peano Arithmetic PA in a model of PA. For any definable model N without parameters in a model M, we show that N is isomorphic to M if M is elementary extension of the standard model and N is elementarily equivalent to M. On the other hand, we show that there is a model M and a definable model N with parameters in M such that N is elementarily equivalent (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  25.  13
    The Pentagon as a Substructure Lattice of Models of Peano Arithmetic.James H. Schmerl - forthcoming - Journal of Symbolic Logic:1-20.
    Wilkie proved in 1977 that every countable model ${\mathcal M}$ of Peano Arithmetic has an elementary end extension ${\mathcal N}$ such that the interstructure lattice $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M})$ is the pentagon lattice ${\mathbf N}_5$. This theorem implies that every countable nonstandard ${\mathcal M}$ has an elementary cofinal extension ${\mathcal N}$ such that $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$. It is proved here that whenever ${\mathcal M} \prec {\mathcal N} \models (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  23
    Closed Normal Subgroups of the Automorphism Group of a Saturated Model of Peano Arithmetic.Ermek S. Nurkhaidarov & Erez Shochat - 2016 - Notre Dame Journal of Formal Logic 57 (1):127-139.
    In this paper we discuss automorphism groups of saturated models and boundedly saturated models of $\mathsf{PA}$. We show that there are saturated models of $\mathsf{PA}$ of the same cardinality with nonisomorphic automorphism groups. We then show that every saturated model of $\mathsf{PA}$ has short saturated elementary cuts with nonisomorphic automorphism groups.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  37
    Definable sets and expansions of models of Peano arithmetic.Roman Murawski - 1988 - Archive for Mathematical Logic 27 (1):21-33.
    We consider expansions of models of Peano arithmetic to models ofA 2 s -¦Δ 1 1 +Σ 1 1 −AC which consist of families of sets definable by nonstandard formulas.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  31
    On expandability of models of Peano arithmetic. III.Roman Murawski - 1977 - Studia Logica 36 (3):181-188.
    Already after sending the first two parts of this paper ([5], [6]) to the editor, two new results on the subject have appeared — namely the results of G. Wilmers and Z. Ratajczyk. So for the sake of completeness let us review them here.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  50
    On expandability of models of Peano arithmetic. I.Roman Murawski - 1976 - Studia Logica 35 (4):409-419.
  30.  42
    Book review: Richard Kaye. Models of Peano arithmetic[REVIEW]Lawrence Kiry - 1992 - Notre Dame Journal of Formal Logic 33 (3):461-463.
  31.  44
    Richard Kaye. Models of Peano arithmetic. Oxford logic guides, no. 15. Clarendon Press, Oxford University Press, Oxford and New York1991, x + 292 pp. [REVIEW]C. Dimitracopoulos - 1993 - Journal of Symbolic Logic 58 (1):357-358.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32.  57
    Uniqueness, collection, and external collapse of cardinals in ist and models of peano arithmetic.V. Kanovei - 1995 - Journal of Symbolic Logic 60 (1):318-324.
    We prove that in IST, Nelson's internal set theory, the Uniqueness and Collection principles, hold for all (including external) formulas. A corollary of the Collection theorem shows that in IST there are no definable mappings of a set X onto a set Y of greater (not equal) cardinality unless both sets are finite and #(Y) ≤ n #(X) for some standard n. Proofs are based on a rather general technique which may be applied to other nonstandard structures. In particular we (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  33.  50
    Automorphism groups of models of Peano arithmetic.James H. Schmerl - 2002 - Journal of Symbolic Logic 67 (4):1249-1264.
    Which groups are isomorphic to automorphism groups of models of Peano Arithmetic? It will be shown here that any group that has half a chance of being isomorphic to the automorphism group of some model of Peano Arithmetic actually is.For any structure, let Aut() be its automorphism group. There are groups which are not isomorphic to any model= (N, +, ·, 0, 1, ≤) of PA. For example, it is clear that Aut(N), being a subgroup (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  34.  50
    Some highly saturated models of Peano arithmetic.James H. Schmerl - 2002 - Journal of Symbolic Logic 67 (4):1265-1273.
    Some highly saturated models of Peano Arithmetic are constructed in this paper, which consists of two independent sections. In § 1 we answer a question raised in [10] by constructing some highly saturated, rather classless models of PA. A question raised in [7], [3], ]4] is answered in §2, where highly saturated, nonstandard universes having no bad cuts are constructed.Highly saturated, rather classless models of Peano Arithmetic were constructed in [10]. The main result (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  22
    On closed elementary cuts in recursively saturated models of Peano arithmetic.Bożena Piekart - 1993 - Notre Dame Journal of Formal Logic 34 (2):223-230.
  36.  77
    A certain class of models of peano arithmetic.Roman Kossak - 1983 - Journal of Symbolic Logic 48 (2):311-320.
  37.  24
    Relatively Recursively Enumerable Versus Relatively Σ1 in Models of Peano Arithmetic.Grzegorz Michalski - 1995 - Mathematical Logic Quarterly 41 (4):515-522.
    We show that that every countable model of PA has a conservative extension M with a subset Y such that a certain Σ1(Y)-formula defines in M a subset which is not r. e. relative to Y.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  46
    A correction to the paper “on expandability of models of peano arithmetic. I”.Roman Murawski - 1977 - Studia Logica 36 (3):237-237.
  39.  33
    Appendix to the paper “Definable sets and expansions of models of Peano arithmetic”.Roman Murawski - 1990 - Archive for Mathematical Logic 30 (2):91-92.
  40.  16
    (1 other version)The Recursively Saturated Part of Models of Peano Arithmetic.Henryk Kotlarski - 1986 - Mathematical Logic Quarterly 32 (19‐24):365-370.
    Direct download  
     
    Export citation  
     
    Bookmark  
  41.  33
    Submodels and definable points in models of Peano arithmetic.Žarko Mijajlović - 1983 - Notre Dame Journal of Formal Logic 24 (4):417-425.
  42.  22
    (1 other version)Iterations of satisfaction classes and models of peano arithmetic.Roman Murawski - 1992 - Mathematical Logic Quarterly 38 (1):59-84.
    Direct download  
     
    Export citation  
     
    Bookmark  
  43.  58
    Saturation and simple extensions of models of peano arithmetic.Matt Kaufmann & James H. Schmerl - 1984 - Annals of Pure and Applied Logic 27 (2):109-136.
  44.  49
    Remarks on weak notions of saturation in models of peano arithmetic.Matt Kaufmann & James H. Schmerl - 1987 - Journal of Symbolic Logic 52 (1):129-148.
  45.  16
    Automorphisms of Models of True Arithmetic: More on Subgroups which Extend to a Maximal One Uniquely.Henryk Kotlarski & Bożena Piekart - 2000 - Mathematical Logic Quarterly 46 (1):111-120.
    Continuing the earlier research in [14] we give some more information about nonmaximal open subgroups of G = Aut with unique maximal extension, where ℳ is a countable recursively saturated model of True Arithmetic.
    Direct download  
     
    Export citation  
     
    Bookmark  
  46.  66
    On external Scott algebras in nonstandard models of peano arithmetic.Vladimir Kanovei - 1996 - Journal of Symbolic Logic 61 (2):586-607.
    We prove that a necessary and sufficient condition for a countable set L of sets of integers to be equal to the algebra of all sets of integers definable in a nonstandard elementary extension of ω by a formula of the PA language which may include the standardness predicate but does not contain nonstandard parameters, is as follows: L is closed under arithmetical definability and contains 0 (ω) , the set of all (Gödel numbers of) true arithmetical sentences. Some results (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  47. Some remarks on initial segments in models of peano arithmetic.Henryk Kotlarski - 1984 - Journal of Symbolic Logic 49 (3):955-960.
    If $M \models PA (= Peano Arithmetic)$ , we set $A^M = \{N \subset_e M: N \models PA\}$ and study this family.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  48.  21
    Minimal satisfaction classes with an application to rigid models of Peano arithmetic.Roman Kossak & James H. Schmerl - 1991 - Notre Dame Journal of Formal Logic 32 (3):392-398.
  49.  50
    Order Types of Models of Fragments of Peano Arithmetic.Lorenzo Galeotti & Benedikt Löwe - 2022 - Bulletin of Symbolic Logic 28 (2):182-206.
    The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  44
    Discernible elements in models for peano arithmetic.Andrzej Ehrenfeucht - 1973 - Journal of Symbolic Logic 38 (2):291-292.
1 — 50 / 958