Results for 'Polynomial enumeration'

951 found
Order:
  1.  39
    On Nondeterminism, Enumeration Reducibility and Polynomial Bounds.Kate Copestake - 1997 - Mathematical Logic Quarterly 43 (3):287-310.
    Enumeration reducibility is a notion of relative computability between sets of natural numbers where only positive information about the sets is used or produced. Extending e‐reducibility to partial functions characterises relative computability between partial functions. We define a polynomial time enumeration reducibility that retains the character of enumeration reducibility and show that it is equivalent to conjunctive non‐deterministic polynomial time reducibility. We define the polynomial time e‐degrees as the equivalence classes under this reducibility and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  97
    Enumerations of the Kolmogorov Function.Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrej Muchnik, Frank Stephan & Leen Torenvliet - 2006 - Journal of Symbolic Logic 71 (2):501 - 528.
    A recursive enumerator for a function h is an algorithm f which enumerates for an input x finitely many elements including h(x), f is a k(n)-enumerator if for every input x of length n, h(x) is among the first k(n) elements enumerated by f. If there is a k(n)-enumerator for h then h is called k(n)-enumerable. We also consider enumerators which are only A-recursive for some oracle A. We determine exactly how hard it is to enumerate the Kolmogorov function, which (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3. Decidability of the two-quantifier theory of the recursively enumerable weak truth-table degrees and other distributive upper semi-lattices.Klaus Ambos-Spies, Peter Fejer, Steffen Lempp & Manuel Lerman - 1996 - Journal of Symbolic Logic 61 (3):880-905.
    We give a decision procedure for the ∀∃-theory of the weak truth-table (wtt) degrees of the recursively enumerable sets. The key to this decision procedure is a characterization of the finite lattices which can be embedded into the r.e. wtt-degrees by a map which preserves the least and greatest elements: a finite lattice has such an embedding if and only if it is distributive and the ideal generated by its cappable elements and the filter generated by its cuppable elements are (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  28
    A theory of rules for enumerated classes of functions.Andreas Schlüter - 1995 - Archive for Mathematical Logic 34 (1):47-63.
    We define an applicative theoryCL 2 similar to combinatory logic which can be interpreted in classes of functions possessing an enumerating function. In contrast to the models of classical combinatory logic, it is not necessarily assumed that the enumerating function itself belongs to that function class. Thereby we get a variety of possible models including e. g. the classes of primitive recursive, recursive, elementary, polynomial-time comptable ofɛ 0-recursive functions.We show that inCL 2 a major part of the metatheory of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  5.  21
    A Mathematical Commitment Without Computational Strength.Anton Freund - 2022 - Review of Symbolic Logic 15 (4):880-906.
    We present a new manifestation of Gödel’s second incompleteness theorem and discuss its foundational significance, in particular with respect to Hilbert’s program. Specifically, we consider a proper extension of Peano arithmetic ( $\mathbf {PA}$ ) by a mathematically meaningful axiom scheme that consists of $\Sigma ^0_2$ -sentences. These sentences assert that each computably enumerable ( $\Sigma ^0_1$ -definable without parameters) property of finite binary trees has a finite basis. Since this fact entails the existence of polynomial time algorithms, it (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  6
    Approximation Theorems Throughout Reverse Mathematics.Sam Sanders - forthcoming - Journal of Symbolic Logic:1-32.
    Reverse Mathematics (RM) is a program in the foundations of mathematics where the aim is to find the minimal axioms needed to prove a given theorem of ordinary mathematics. Generally, the minimal axioms are equivalent to the theorem at hand, assuming a weak logical system called the base theory. Moreover, many theorems are either provable in the base theory or equivalent to one of four logical systems, together called the Big Five. For instance, the Weierstrass approximation theorem, i.e., that a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  54
    Classical recursion theory: the theory of functions and sets of natural numbers.Piergiorgio Odifreddi - 1989 - New York, N.Y., USA: Sole distributors for the USA and Canada, Elsevier Science Pub. Co..
    Volume II of Classical Recursion Theory describes the universe from a local (bottom-up or synthetical) point of view, and covers the whole spectrum, from the recursive to the arithmetical sets. The first half of the book provides a detailed picture of the computable sets from the perspective of Theoretical Computer Science. Besides giving a detailed description of the theories of abstract Complexity Theory and of Inductive Inference, it contributes a uniform picture of the most basic complexity classes, ranging from small (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   73 citations  
  8.  55
    Computability Theory: An Introduction to Recursion Theory.Herbert B. Enderton - 2010 - Academic Press.
    Machine generated contents note: 1. The Computability Concept;2. General Recursive Functions;3. Programs and Machines;4. Recursive Enumerability;5. Connections to Logic;6. Degrees of Unsolvability;7. Polynomial-Time Computability;Appendix: Mathspeak;Appendix: Countability;Appendix: Decadic Notation;.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  10
    Htp-complete rings of rational numbers.Russell Miller - 2022 - Journal of Symbolic Logic 87 (1):252-272.
    For a ring R, Hilbert’s Tenth Problem $HTP$ is the set of polynomial equations over R, in several variables, with solutions in R. We view $HTP$ as an enumeration operator, mapping each set W of prime numbers to $HTP$, which is naturally viewed as a set of polynomials in $\mathbb {Z}[X_1,X_2,\ldots ]$. It is known that for almost all W, the jump $W'$ does not $1$ -reduce to $HTP$. In contrast, we show that every Turing degree contains a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  34
    Complexity of logic-based argumentation in Post's framework.Nadia Creignou, Johannes Schmidt, Michael Thomas & Stefan Woltran - 2011 - Argument and Computation 2 (2-3):107 - 129.
    Many proposals for logic-based formalisations of argumentation consider an argument as a pair (Φ,α), where the support Φ is understood as a minimal consistent subset of a given knowledge base which has to entail the claim α. In case the arguments are given in the full language of classical propositional logic reasoning in such frameworks becomes a computationally costly task. For instance, the problem of deciding whether there exists a support for a given claim has been shown to be -complete. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  29
    On expansions of.Quentin Lambotte & Françoise Point - 2020 - Annals of Pure and Applied Logic 171 (8):102809.
    Call a (strictly increasing) sequence (rn) of natural numbers regular if it satisfies the following condition: rn+1/rn→θ∈R>1∪{∞} and, if θ is algebraic, then (rn) satisfies a linear recurrence relation whose characteristic polynomial is the minimal polynomial of θ. Our main result states that (Z,+,0,R) is superstable whenever R is enumerated by a regular sequence. We give two proofs of this result. One relies on a result of E. Casanovas and M. Ziegler and the other on a quantifier elimination (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  13
    A Minimal Set Low for Speed.Rod Downey & Matthew Harrison-Trainor - 2022 - Journal of Symbolic Logic 87 (4):1693-1728.
    An oracle A is low-for-speed if it is unable to speed up the computation of a set which is already computable: if a decidable language can be decided in time $t(n)$ using A as an oracle, then it can be decided without an oracle in time $p(t(n))$ for some polynomial p. The existence of a set which is low-for-speed was first shown by Bayer and Slaman who constructed a non-computable computably enumerable set which is low-for-speed. In this paper we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  28
    Teachers, Learners, and Oracles.Achilles Beros & Colin de la Higuera - 2019 - Notre Dame Journal of Formal Logic 60 (1):13-26.
    We exhibit a family of computably enumerable sets which can be learned within polynomial resource bounds given access only to a teacher but which requires exponential resources to be learned given access only to a membership oracle. In general, we compare the families that can be learned with and without teachers and oracles for four measures of efficient learning.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  41
    Diophantine equivalence and countable rings.Alexandra Shlapentokh - 1994 - Journal of Symbolic Logic 59 (3):1068-1095.
    We show that Diophantine equivalence of two suitably presented countable rings implies that the existential polynomial languages of the two rings have the same "expressive power" and that their Diophantine sets are in some sense the same. We also show that a Diophantine class of countable rings is contained completely within a relative enumeration class and demonstrate that one consequence of this fact is the existence of infinitely many Diophantine classes containing holomophy rings of Q.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  26
    Weakly minimal groups with a new predicate.Gabriel Conant & Michael C. Laskowski - 2020 - Journal of Mathematical Logic 20 (2):2050011.
    Fix a weakly minimal (i.e. superstable U-rank 1) structure M. Let M∗ be an expansion by constants for an elementary substructure, and let A be an arbitrary subset of the universe M. We show that all formulas in the expansion (M∗,A) are equivalent to bounded formulas, and so (M,A) is stable (or NIP) if and only if the M-induced structure AM on A is stable (or NIP). We then restrict to the case that M is a pure abelian group with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  26
    Polynomial clone reducibility.Quinn Culver - 2014 - Archive for Mathematical Logic 53 (1-2):1-10.
    Polynomial clone reducibilities are generalizations of the truth-table reducibilities. A polynomial clone is a set of functions over a finite set X that is closed under composition and contains all the constant and projection functions. For a fixed polynomial clone ${\fancyscript{C}}$ , a sequence ${B\in X^{\omega}}$ is ${\fancyscript{C}}$ -reducible to ${A \in {X}^{\omega}}$ if there is an algorithm that computes B from A using only effectively selected functions from ${\fancyscript{C}}$ . We show that if A is Kurtz (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17. Polynomial ring calculus for modal logics: A new semantics and proof method for modalities: Polynomial ring calculus for modal logics.Juan C. Agudelo - 2011 - Review of Symbolic Logic 4 (1):150-170.
    A new proof style adequate for modal logics is defined from the polynomial ring calculus. The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra???Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S 5, and can be easily extended to (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  22
    On Polynomial-Time Relation Reducibility.Su Gao & Caleb Ziegler - 2017 - Notre Dame Journal of Formal Logic 58 (2):271-285.
    We study the notion of polynomial-time relation reducibility among computable equivalence relations. We identify some benchmark equivalence relations and show that the reducibility hierarchy has a rich structure. Specifically, we embed the partial order of all polynomial-time computable sets into the polynomial-time relation reducibility hierarchy between two benchmark equivalence relations Eλ and id. In addition, we consider equivalence relations with finitely many nontrivial equivalence classes and those whose equivalence classes are all finite.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  20
    Best Polynomial Harmony Search with Best β-Hill Climbing Algorithm.Eugene Santos & Iyad Abu Doush - 2020 - Journal of Intelligent Systems 30 (1):1-17.
    Harmony Search Algorithm (HSA) is an evolutionary algorithm which mimics the process of music improvisation to obtain a nice harmony. The algorithm has been successfully applied to solve optimization problems in different domains. A significant shortcoming of the algorithm is inadequate exploitation when trying to solve complex problems. The algorithm relies on three operators for performing improvisation: memory consideration, pitch adjustment, and random consideration. In order to improve algorithm efficiency, we use roulette wheel and tournament selection in memory consideration, replace (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  20. A polynomial time algorithm for determining Dag equivalence in the presence of latent variables and selection bias.Peter Spirtes - unknown
    if and only if for every W in V, W is independent of the set of all its non-descendants conditional on the set of its parents. One natural question that arises with respect to DAGs is when two DAGs are “statistically equivalent”. One interesting sense of “statistical equivalence” is “d-separation equivalence” (explained in more detail below.) In the case of DAGs, d-separation equivalence is also corresponds to a variety of other natural senses of statistical equivalence (such as representing the same (...)
     
    Export citation  
     
    Bookmark   2 citations  
  21.  39
    A Counterexample to Polynomially Bounded Realizability of Basic Arithmetic.Mohammad Ardeshir, Erfan Khaniki & Mohsen Shahriari - 2019 - Notre Dame Journal of Formal Logic 60 (3):481-489.
    We give a counterexample to the claim that every provably total function of Basic Arithmetic is a polynomially bounded primitive recursive function.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  20
    Tactile Enumeration and Embodied Numerosity Among the Deaf.Shachar Hochman, Zahira Z. Cohen, Mattan S. Ben-Shachar & Avishai Henik - 2020 - Cognitive Science 44 (8):e12880.
    Representations of the fingers are embodied in our cognition and influence performance in enumeration tasks. Among deaf signers, the fingers also serve as a tool for communication in sign language. Previous studies in normal hearing (NH) participants showed effects of embodiment (i.e., embodied numerosity) on tactile enumeration using the fingers of one hand. In this research, we examined the influence of extensive visuo‐manual use on tactile enumeration among the deaf. We carried out four enumeration task experiments, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  24
    The polynomial and linear time hierarchies in V0.Leszek A. Kołodziejczyk & Neil Thapen - 2009 - Mathematical Logic Quarterly 55 (5):509-514.
    We show that the bounded arithmetic theory V0 does not prove that the polynomial time hierarchy collapses to the linear time hierarchy . The result follows from a lower bound for bounded depth circuits computing prefix parity, where the circuits are allowed some auxiliary input; we derive this from a theorem of Ajtai.
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  58
    The Analytic Polynomial-Time Hierarchy.Herbert Baier & Klaus W. Wagner - 1998 - Mathematical Logic Quarterly 44 (4):529-544.
    Motivated by results on interactive proof systems we investigate an ∃-∀hierarchy over P using word quantifiers as well as two types of set quantifiers. This hierarchy, which extends the polynomial-time hierarchy, is called the analytic polynomial-time hierarchy. It is shown that every class of this hierarchy coincides with one of the following Classes: ∑math image, Πmath image , PSPACE, ∑math image or Πmath image . This improves previous results by Orponen [6] and allows interesting comparisons with the above (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. On polynomial time computation over unordered structures.Andreas Blass, Yuri Gurevich & Saharon Shelah - 2002 - Journal of Symbolic Logic 67 (3):1093-1125.
    This paper is motivated by the question whether there exists a logic capturing polynomial time computation over unordered structures. We consider several algorithmic problems near the border of the known, logically defined complexity classes contained in polynomial time. We show that fixpoint logic plus counting is stronger than might be expected, in that it can express the existence of a complete matching in a bipartite graph. We revisit the known examples that separate polynomial time from fixpoint plus (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  26.  18
    Polynomials and equations in arabic algebra.Jeffrey A. Oaks - 2009 - Archive for History of Exact Sciences 63 (2):169-203.
    It is shown in this article that the two sides of an equation in the medieval Arabic algebra are aggregations of the algebraic “numbers” (powers) with no operations present. Unlike an expression such as our 3x + 4, the Arabic polynomial “three things and four dirhams” is merely a collection of seven objects of two different types. Ideally, the two sides of an equation were polynomials so the Arabic algebraists preferred to work out all operations of the enunciation to (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  27.  32
    Polynomial induction and length minimization in intuitionistic bounded arithmetic.Morteza Moniri - 2005 - Mathematical Logic Quarterly 51 (1):73-76.
    It is shown that the feasibly constructive arithmetic theory IPV does not prove LMIN, unless the polynomial hierarchy CPV-provably collapses. It is proved that PV plus LMIN intuitionistically proves PIND. It is observed that PV + PIND does not intuitionistically prove NPB, a scheme which states that the extended Frege systems are not polynomially bounded.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  19
    Polynomial Time Uniform Word Problems.Stanley Burris - 1995 - Mathematical Logic Quarterly 41 (2):173-182.
    We have two polynomial time results for the uniform word problem for a quasivariety Q: The uniform word problem for Q can be solved in polynomial time iff one can find a certain congruence on finite partial algebras in polynomial time. Let Q* be the relational class determined by Q. If any universal Horn class between the universal closure S and the weak embedding closure S̄ of Q* is finitely axiomatizable then the uniform word problem for Q (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  29.  53
    Polynomially Bounded Recursive Realizability.Saeed Salehi - 2005 - Notre Dame Journal of Formal Logic 46 (4):407-417.
    A polynomially bounded recursive realizability, in which the recursive functions used in Kleene's realizability are restricted to polynomially bounded functions, is introduced. It is used to show that provably total functions of Ruitenburg's Basic Arithmetic are polynomially bounded (primitive) recursive functions. This sharpens our earlier result where those functions were proved to be primitive recursive. Also a polynomially bounded schema of Church's Thesis is shown to be polynomially bounded realizable. So the schema is consistent with Basic Arithmetic, whereas it is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  52
    Polynomial local search in the polynomial hierarchy and witnessing in fragments of bounded arithmetic.Arnold Beckmann & Samuel R. Buss - 2009 - Journal of Mathematical Logic 9 (1):103-138.
    The complexity class of [Formula: see text]-polynomial local search problems is introduced and is used to give new witnessing theorems for fragments of bounded arithmetic. For 1 ≤ i ≤ k + 1, the [Formula: see text]-definable functions of [Formula: see text] are characterized in terms of [Formula: see text]-PLS problems. These [Formula: see text]-PLS problems can be defined in a weak base theory such as [Formula: see text], and proved to be total in [Formula: see text]. Furthermore, the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  31.  35
    Time polynomial in input or output.Yuri Gurevich & Saharon Shelah - 1989 - Journal of Symbolic Logic 54 (3):1083-1088.
    We introduce the class PIO of functions computable in time that is polynomial in max{the length of input, the length of output}, observe that there is no notation system for total PIO functions but there are notation systems for partial PIO functions, and give an algebra of partial PIO functions from binary strings to binary strings.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  32. Recursively enumerable generic sets.Wolfgang Maass - 1982 - Journal of Symbolic Logic 47 (4):809-823.
    We show that one can solve Post's Problem by constructing generic sets in the usual set theoretic framework applied to tiny universes. This method leads to a new class of recursively enumerable sets: r.e. generic sets. All r.e. generic sets are low and simple and therefore of Turing degree strictly between 0 and 0'. Further they supply the first example of a class of low recursively enumerable sets which are automorphic in the lattice E of recursively enumerable sets with inclusion. (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  33.  33
    Choiceless polynomial time, counting and the Cai–Fürer–Immerman graphs.Anuj Dawar, David Richerby & Benjamin Rossman - 2008 - Annals of Pure and Applied Logic 152 (1-3):31-50.
    We consider Choiceless Polynomial Time , a language introduced by Blass, Gurevich and Shelah, and show that it can express a query originally constructed by Cai, Fürer and Immerman to separate fixed-point logic with counting from image. This settles a question posed by Blass et al. The program we present uses sets of unbounded finite rank: we demonstrate that this is necessary by showing that the query cannot be computed by any program that has a constant bound on the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  34.  27
    A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  35.  17
    The polynomial hierarchy for some structures over the binary words.Herwig Nübling - 2007 - Mathematical Logic Quarterly 53 (1):43-51.
    For each k > 0 we construct an algebraic structure over which the polynomial hierarchy collapses at level k. We also find an algebraic structure over which the polynomial hierarchy does not collapse.
    Direct download  
     
    Export citation  
     
    Bookmark  
  36.  55
    Polynomial size proofs of the propositional pigeonhole principle.Samuel R. Buss - 1987 - Journal of Symbolic Logic 52 (4):916-927.
    Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also discuss connections to provability in theories of bounded arithmetic.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  37.  46
    Enumerators of lambda terms are reducing constructively.Henk Barendregt - 1995 - Annals of Pure and Applied Logic 73 (1):3-9.
    A closed λ-term E is called an enumerator if M ε /gL/dg /gTn ε N E/drn/dl = β M. Here Λ° is the set of closed λ-terms, N is the set of natural numbers and the /drn/dl are the Church numerals λfx./tfnx. Such an E is called reducing if moreover M ε /gL/dg /gTn ε N E/drn/dl /a/gb M. In 1983 I conjectured that every enumerator is reducing. An ingenious recursion theoretic proof of this conjecture by Statman is presented in (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  18
    Polynomials and General Degree-Based Topological Indices of Generalized Sierpinski Networks.Chengmei Fan, M. Mobeen Munir, Zafar Hussain, Muhammad Athar & Jia-Bao Liu - 2021 - Complexity 2021:1-10.
    Sierpinski networks are networks of fractal nature having several applications in computer science, music, chemistry, and mathematics. These networks are commonly used in chaos, fractals, recursive sequences, and complex systems. In this article, we compute various connectivity polynomials such as M -polynomial, Zagreb polynomials, and forgotten polynomial of generalized Sierpinski networks S k n and recover some well-known degree-based topological indices from these. We also compute the most general Zagreb index known as α, β -Zagreb index and several (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  39
    Polynomials in a Single Ordinal Variable.John L. Hickman - 1979 - Mathematical Logic Quarterly 25 (7-12):173-178.
  40.  27
    Strong Enumeration Reducibilities.Roland Sh Omanadze & Andrea Sorbi - 2006 - Archive for Mathematical Logic 45 (7):869-912.
    We investigate strong versions of enumeration reducibility, the most important one being s-reducibility. We prove that every countable distributive lattice is embeddable into the local structure $L(\mathfrak D_s)$ of the s-degrees. However, $L(\mathfrak D_s)$ is not distributive. We show that on $\Delta^{0}_{2}$ sets s-reducibility coincides with its finite branch version; the same holds of e-reducibility. We prove some density results for $L(\mathfrak D_s)$ . In particular $L(\mathfrak D_s)$ is upwards dense. Among the results about reducibilities that are stronger than (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  41.  39
    Computability, enumerability, unsolvability: directions in recursion theory.S. B. Cooper, T. A. Slaman & S. S. Wainer (eds.) - 1996 - New York: Cambridge University Press.
    The fundamental ideas concerning computation and recursion naturally find their place at the interface between logic and theoretical computer science. The contributions in this book, by leaders in the field, provide a picture of current ideas and methods in the ongoing investigations into the pure mathematical foundations of computability theory. The topics range over computable functions, enumerable sets, degree structures, complexity, subrecursiveness, domains and inductive inference. A number of the articles contain introductory and background material which it is hoped will (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  42.  17
    Polynomial games and determinacy.Tomoyuki Yamakami - 1996 - Annals of Pure and Applied Logic 80 (1):1-16.
    Two-player, zero-sum, non-cooperative, blindfold games in extensive form with incomplete information are considered in this paper. Any information about past moves which players played is stored in a database, and each player can access the database. A polynomial game is a game in which, at each step, all players withdraw at most a polynomial amount of previous information from the database. We show resource-bounded determinacy of some kinds of finite, zero-sum, polynomial games whose pay-off sets are computable (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  43.  39
    Polynomizing: Logic inference in polynomial format and the legacy of Boole.Walter Carnielli - 2007 - In L. Magnani & P. Li (eds.), Model-Based Reasoning in Science, Technology, and Medicine. Springer. pp. 349--364.
    Polynomizing is a term that intends to describe the uses of polynomial-like representations as a reasoning strategy and as a tool for scientific heuristics. I show how proof-theory and semantics for classical and several non-classical logics can be approached from this perspective, and discuss the assessment of this prospect, in particular to recover certain ideas of George Boole in unifying logic, algebra and the differential calculus.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  44.  36
    Bounded enumeration reducibility and its degree structure.Daniele Marsibilio & Andrea Sorbi - 2012 - Archive for Mathematical Logic 51 (1-2):163-186.
    We study a strong enumeration reducibility, called bounded enumeration reducibility and denoted by ≤be, which is a natural extension of s-reducibility ≤s. We show that ≤s, ≤be, and enumeration reducibility do not coincide on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} –sets, and the structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{\mathcal{D}_{\rm be}}}$$\end{document} of the be-degrees is not elementarily equivalent to the structure of the s-degrees. We show also that the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  42
    The polynomial and linear hierarchies in models where the weak pigeonhole principle fails.Leszek Aleksander Kołodziejczyk & Neil Thapen - 2008 - Journal of Symbolic Logic 73 (2):578-592.
    We show, under the assumption that factoring is hard, that a model of PV exists in which the polynomial hierarchy does not collapse to the linear hierarchy; that a model of S21 exists in which NP is not in the second level of the linear hierarchy; and that a model of S21 exists in which the polynomial hierarchy collapses to the linear hierarchy. Our methods are model-theoretic. We use the assumption about factoring to get a model in which (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  46.  40
    On polynomial semantics for propositional logics.Juan C. Agudelo-Agudelo, Carlos A. Agudelo-González & Oscar E. García-Quintero - 2016 - Journal of Applied Non-Classical Logics 26 (2):103-125.
    Some properties and an algorithm for solving systems of multivariate polynomial equations over finite fields are presented. It is then shown how formulas of propositional logics can be translated into polynomials over finite fields in such a way that several logic problems are expressed in terms of algebraic problems. Consequently, algebraic properties and algorithms can be used to solve the algebraically-represented logic problems. The methods described herein combine and generalise those of various previous works.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Computably enumerable equivalence relations.Su Gao & Peter Gerdes - 2001 - Studia Logica 67 (1):27-59.
    We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  48.  27
    An Interval of Computably Enumerable Isolating Degrees.Matthew C. Salts - 1999 - Mathematical Logic Quarterly 45 (1):59-72.
    We construct computably enumerable degrees a < b such that all computably enumerable degrees c with a < c < b isolate some d. c. e. degree d.
    Direct download  
     
    Export citation  
     
    Bookmark  
  49. (1 other version)Polynomial time operations in explicit mathematics.Thomas Strahm - 1997 - Journal of Symbolic Logic 62 (2):575-594.
    In this paper we study (self)-applicative theories of operations and binary words in the context of polynomial time computability. We propose a first order theory PTO which allows full self-application and whose provably total functions on W = {0, 1} * are exactly the polynomial time computable functions. Our treatment of PTO is proof-theoretic and very much in the spirit of reductive proof theory.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50.  37
    Polynomial time ultrapowers and the consistency of circuit lower bounds.Jan Bydžovský & Moritz Müller - 2020 - Archive for Mathematical Logic 59 (1-2):127-147.
    A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory \ of all polynomial time functions. Generalizing a theorem of Hirschfeld :111–126, 1975), we show that every countable model of \ is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 951