Results for 'Provably recursive functions'

963 found
Order:
  1.  28
    On provable recursive functions.H. B. Enderton - 1968 - Notre Dame Journal of Formal Logic 9 (1):86-88.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  2.  40
    Provably recursive functions of constructive and relatively constructive theories.Morteza Moniri - 2010 - Archive for Mathematical Logic 49 (3):291-300.
    In this paper we prove conservation theorems for theories of classical first-order arithmetic over their intuitionistic version. We also prove generalized conservation results for intuitionistic theories when certain weak forms of the principle of excluded middle are added to them. Members of two families of subsystems of Heyting arithmetic and Buss-Harnik’s theories of intuitionistic bounded arithmetic are the intuitionistic theories we consider. For the first group, we use a method described by Leivant based on the negative translation combined with a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3. Syntactic translations and provably recursive functions.Daniel Leivant - 1985 - Journal of Symbolic Logic 50 (3):682-688.
  4.  28
    H. B. Enderton. On provable recursive functions. Notre Dame journal of formal logic, vol. 9 no. 1 , pp. 86–88.Hartley Rogers - 1973 - Journal of Symbolic Logic 38 (3):526-527.
  5.  45
    (1 other version)Hierarchies of Provably Recursive Functions.Stanley S. Wainer - 1998 - In Samuel R. Buss (ed.), Handbook of proof theory. New York: Elsevier. pp. 149.
  6.  48
    Ramsey's Theorem for Pairs and Provably Recursive Functions.Alexander Kreuzer & Ulrich Kohlenbach - 2009 - Notre Dame Journal of Formal Logic 50 (4):427-444.
    This paper addresses the strength of Ramsey's theorem for pairs ($RT^2_2$) over a weak base theory from the perspective of 'proof mining'. Let $RT^{2-}_2$ denote Ramsey's theorem for pairs where the coloring is given by an explicit term involving only numeric variables. We add this principle to a weak base theory that includes weak König's Lemma and a substantial amount of $\Sigma^0_1$-induction (enough to prove the totality of all primitive recursive functions but not of all primitive recursive (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  7.  76
    Induction rules, reflection principles, and provably recursive functions.Lev D. Beklemishev - 1997 - Annals of Pure and Applied Logic 85 (3):193-242.
    A well-known result states that, over basic Kalmar elementary arithmetic EA, the induction schema for ∑n formulas is equivalent to the uniform reflection principle for ∑n + 1 formulas . We show that fragments of arithmetic axiomatized by various forms of induction rules admit a precise axiomatization in terms of reflection principles as well. Thus, the closure of EA under the induction rule for ∑n formulas is equivalent to ω times iterated ∑n reflection principle. Moreover, for k < ω, k (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  8.  62
    (1 other version)Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals.Ulrich Kohlenbach - 1996 - Archive for Mathematical Logic 36 (1):31-71.
  9.  31
    Spector Clifford. Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics. Recursive function theory, Proceedings of symposia in pure mathematics, vol. 5, American Mathematical Society, Providence 1962, pp. 1–27. [REVIEW]R. E. Vesley - 1967 - Journal of Symbolic Logic 32 (1):128-128.
  10.  82
    Matt Fairtlough and Stanley S. Wainer. Hierarchies of provably recursive functions. Handbook of proof theory, edited by Samuel R. Buss, Studies in logic and the foundations of mathematics, vol. 137, Elsevier, Amsterdam etc. 1998, pp. 149–207. [REVIEW]Toshiyasu Arai - 2000 - Bulletin of Symbolic Logic 6 (4):466-467.
  11.  42
    Patrick C. Fischer. Theory of provable recursive functions. Transactions of the American Mathematical Society, vol. 117 , pp. 494–520. [REVIEW]H. B. Enderton - 1967 - Journal of Symbolic Logic 32 (2):270.
  12.  41
    Provably total functions of Basic Arithemtic.Saeed Salehi - 2003 - Mathematical Logic Quarterly 49 (3):316.
    It is shown that all the provably total functions of Basic Arithmetic BA, a theory introduced by Ruitenburg based on Predicate Basic Calculus, are primitive recursive. Along the proof a new kind of primitive recursive realizability to which BA is sound, is introduced. This realizability is similar to Kleene's recursive realizability, except that recursive functions are restricted to primitive recursives.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  13.  62
    Lev D. Beklemishev. Induction rules, reflection principles, and provably recursive functions. Annals of pure and applied logic, vol. 85 , pp. 193–242. [REVIEW]Volker Halbach - 2002 - Bulletin of Symbolic Logic 8 (2):302-303.
  14. Accessible recursive functions.Stanley S. Wainer - 1999 - Bulletin of Symbolic Logic 5 (3):367-388.
    The class of all recursive functions fails to possess a natural hierarchical structure, generated predicatively from "within". On the other hand, many (proof-theoretically significant) sub-recursive classes do. This paper attempts to measure the limit of predicative generation in this context, by classifying and characterizing those (predictably terminating) recursive functions which can be successively defined according to an autonomy condition of the form: allow recursions only over well-orderings which have already been "coded" at previous levels. The (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  7
    The provably total functions of basic arithmetic and its extensions.Mohammad Ardeshir, Erfan Khaniki & Mohsen Shahriari - 2025 - Archive for Mathematical Logic 64 (1):205-257.
    We study Basic Arithmetic, $$\textsf{BA}$$ introduced by Ruitenburg (Notre Dame J Formal Logic 39:18–46, 1998). $$\textsf{BA}$$ is an arithmetical theory based on basic logic which is weaker than intuitionistic logic. We show that the class of the provably total recursive functions of $$\textsf{BA}$$ is a proper sub-class of the primitive recursive functions. Three extensions of $$\textsf{BA}$$, called $$\textsf{BA}+\mathsf U$$, $$\mathsf {BA_{\mathrm c}}$$ and $$\textsf{EBA}$$ are investigated with relation to their provably total recursive (...). It is shown that the provably total recursive functions of these three extensions of $$\textsf{BA}$$ are exactly the primitive recursive functions. Moreover, among other things, it is shown that the well-known MRDP theorem does not hold in $$\textsf{BA}$$, $$\textsf{BA}+\mathsf U$$, $$\mathsf {BA_{\mathrm c}}$$, but holds in $$\textsf{EBA}$$. (shrink)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  57
    Degrees of Relative Provability.Mingzhong Cai - 2012 - Notre Dame Journal of Formal Logic 53 (4):479-489.
    There are many classical connections between the proof-theoretic strength of systems of arithmetic and the provable totality of recursive functions. In this paper we study the provability strength of the totality of recursive functions by investigating the degree structure induced by the relative provability order of recursive algorithms. We prove several results about this proof-theoretic degree structure using recursion-theoretic techniques such as diagonalization and the Recursion Theorem.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  17.  44
    Elementary descent recursion and proof theory.Harvey Friedman & Michael Sheard - 1995 - Annals of Pure and Applied Logic 71 (1):1-45.
    We define a class of functions, the descent recursive functions, relative to an arbitrary elementary recursive system of ordinal notations. By means of these functions, we provide a general technique for measuring the proof-theoretic strength of a variety of systems of first-order arithmetic. We characterize the provable well-orderings and provably recursive functions of these systems, and derive various conservation and equiconsistency results.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  18.  53
    Polynomially Bounded Recursive Realizability.Saeed Salehi - 2005 - Notre Dame Journal of Formal Logic 46 (4):407-417.
    A polynomially bounded recursive realizability, in which the recursive functions used in Kleene's realizability are restricted to polynomially bounded functions, is introduced. It is used to show that provably total functions of Ruitenburg's Basic Arithmetic are polynomially bounded (primitive) recursive functions. This sharpens our earlier result where those functions were proved to be primitive recursive. Also a polynomially bounded schema of Church's Thesis is shown to be polynomially bounded realizable. So (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  30
    Finitary Treatment of Operator Controlled Derivations.Wilfried Buchholz - 2001 - Mathematical Logic Quarterly 47 (3):363-396.
    By combining the methods of two former papers of ours we develop a finitary ordinal analysis of the axiom system KPi of Kripke-P atek set theory with an inaccessible universe. As a main result we obtain an upper bound for the provably recursive functions of KPi.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  14
    Intrinsic reasoning about functional programs I: first order theories.Daniel Leivant - 2002 - Annals of Pure and Applied Logic 114 (1-3):117-153.
    We propose a rudimentary formal framework for reasoning about recursion equations over inductively generated data. Our formalism admits all equational programs , and yet singles out none. While being simple, this framework has numerous extensions and applications. Here we lay out the basic concepts and definitions; show that the deductive power of our formalism is similar to that of Peano's Arithmetic; prove a strong normalization theorem; and exhibit a mapping from natural deduction derivations to an applied λ -calculus, à la (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  38
    Two recursion theoretic characterizations of proof speed-ups.James S. Royer - 1989 - Journal of Symbolic Logic 54 (2):522-526.
    Smullyan in [Smu61] identified the recursion theoretic essence of incompleteness results such as Gödel's first incompleteness theorem and Rosser's theorem. Smullyan showed that, for sufficiently complex theories, the collection of provable formulae and the collection of refutable formulae are effectively inseparable—where formulae and their Gödel numbers are identified. This paper gives a similar treatment for proof speed-up. We say that a formal system S1is speedable over another system S0on a set of formulaeAiff, for each recursive functionh, there is a (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  31
    Subsystems of true arithmetic and hierarchies of functions.Z. Ratajczyk - 1993 - Annals of Pure and Applied Logic 64 (2):95-152.
    Ratajczyk, Z., Subsystems of true arithmetic and hierarchies of functions, Annals of Pure and Applied Logic 64 95–152. The combinatorial method coming from the study of combinatorial sentences independent of PA is developed. Basing on this method we present the detailed analysis of provably recursive functions associated with higher levels of transfinite induction, I, and analyze combinatorial sentences independent of I. Our treatment of combinatorial sentences differs from the one given by McAloon [18] and gives more (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  23.  57
    (1 other version)Some results on cut-elimination, provable well-orderings, induction and reflection.Toshiyasu Arai - 1998 - Annals of Pure and Applied Logic 95 (1-3):93-184.
    We gather the following miscellaneous results in proof theory from the attic.1. 1. A provably well-founded elementary ordering admits an elementary order preserving map.2. 2. A simple proof of an elementary bound for cut elimination in propositional calculus and its applications to separation problem in relativized bounded arithmetic below S21.3. 3. Equivalents for Bar Induction, e.g., reflection schema for ω logic.4. 4. Direct computations in an equational calculus PRE and a decidability problem for provable inequations in PRE.5. 5. Intuitionistic (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  24.  43
    Ackermann’s substitution method.Georg Moser - 2006 - Annals of Pure and Applied Logic 142 (1):1-18.
    We aim at a conceptually clear and technically smooth investigation of Ackermann’s substitution method [W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Math. Ann. 117 162–194]. Our analysis provides a direct classification of the provably recursive functions of , i.e. Peano Arithmetic framed in the ε-calculus.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  25.  58
    (1 other version)Fragments of Heyting arithmetic.Wolfgang Burr - 2000 - Journal of Symbolic Logic 65 (3):1223-1240.
    We define classes Φnof formulae of first-order arithmetic with the following properties:(i) Everyφϵ Φnis classically equivalent to a Πn-formula (n≠ 1, Φ1:= Σ1).(ii)(iii)IΠnandiΦn(i.e., Heyting arithmetic with induction schema restricted to Φn-formulae) prove the same Π2-formulae.We further generalize a result by Visser and Wehmeier. namely that prenex induction within intuitionistic arithmetic is rather weak: After closing Φnboth under existential and universal quantification (we call these classes Θn) the corresponding theoriesiΘnstill prove the same Π2-formulae. In a second part we consideriΔ0plus collection-principles. We (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  26. An application of category-theoretic semantics to the characterisation of complexity classes using higher-order function algebras.Martin Hofmann - 1997 - Bulletin of Symbolic Logic 3 (4):469-486.
    We use the category of presheaves over PTIME-functions in order to show that Cook and Urquhart's higher-order function algebra PV ω defines exactly the PTIME-functions. As a byproduct we obtain a syntax-free generalisation of PTIME-computability to higher types. By restricting to sheaves for a suitable topology we obtain a model for intuitionistic predicate logic with ∑ 1 b -induction over PV ω and use this to re-establish that the provably total functions in this system are polynomial (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27. (1 other version)How is it that infinitary methods can be applied to finitary mathematics? Gödel's T: a case study.Andreas Weiermann - 1998 - Journal of Symbolic Logic 63 (4):1348-1370.
    Inspired by Pohlers' local predicativity approach to Pure Proof Theory and Howard's ordinal analysis of bar recursion of type zero we present a short, technically smooth and constructive strong normalization proof for Gödel's system T of primitive recursive functionals of finite types by constructing an ε 0 -recursive function [] 0 : T → ω so that a reduces to b implies [a] $_0 > [b]_0$ . The construction of [] 0 is based on a careful analysis of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  28.  48
    A Buchholz Derivation System for the Ordinal Analysis of KP + Π₃-Reflection.Markus Michelbrink - 2006 - Journal of Symbolic Logic 71 (4):1237 - 1283.
    In this paper we introduce a notation system for the infinitary derivations occurring in the ordinal analysis of KP + Π₃-Reflection due to Michael Rathjen. This allows a finitary ordinal analysis of KP + Π₃-Reflection. The method used is an extension of techniques developed by Wilfried Buchholz, namely operator controlled notation systems for RS∞-derivations. Similarly to Buchholz we obtain a characterisation of the provably recursive functions of KP + Π₃-Reflection as <-recursive functions where < is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  29.  21
    Elementary arithmetic.Geoffrey E. Ostrin & Stanley S. Wainer - 2005 - Annals of Pure and Applied Logic 133 (1):275-292.
    There is a very simple way in which the safe/normal variable discipline of Bellantoni–Cook recursion [S. Bellantoni, S. Cook, A new recursion theoretic characterization of the polytime functions, Computational Complexity 2 97–110] can be imposed on arithmetical theories like PA: quantify over safes and induct on normals. This weakens the theory severely, so that the provably recursive functions become more realistically computable . Earlier results of D. Leivant [Intrinsic theories and computational complexity, in: D. Leivant , (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  40
    (1 other version)On the arithmetical content of restricted forms of comprehension, choice and general uniform boundedness.Ulrich Kohlenbach - 1998 - Annals of Pure and Applied Logic 95 (1-3):257-285.
    In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems Tnω in all finite types which are suited to formalize substantial parts of analysis but nevertheless have provably recursive functions of low growth. We reduce the use of instances of these principles in Tnω-proofs of a large class of formulas to the use of instances of certain arithmetical principles thereby determining (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Elementary realizability.Zlatan Damnjanovic - 1997 - Journal of Philosophical Logic 26 (3):311-339.
    A realizability notion that employs only Kalmar elementary functions is defined, and, relative to it, the soundness of EA-(Π₁⁰-IR), a fragment of Heyting Arithmetic (HA) with names and axioms for all elementary functions and induction rule restricted to Π₁⁰ formulae, is proved. As a corollary, it is proved that the provably recursive functions of EA-(Π₁⁰-IR) are precisely the elementary functions. Elementary realizability is proposed as a model of strict arithmetic constructivism, which allows only those (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32. Minimal realizability of intuitionistic arithmetic and elementary analysis.Zlatan Damnjanovic - 1995 - Journal of Symbolic Logic 60 (4):1208-1241.
    A new method of "minimal" realizability is proposed and applied to show that the definable functions of Heyting arithmetic (HA)--functions f such that HA $\vdash \forall x\exists!yA(x, y)\Rightarrow$ for all m, A(m, f(m)) is true, where A(x, y) may be an arbitrary formula of L(HA) with only x, y free--are precisely the provably recursive functions of the classical Peano arithmetic (PA), i.e., the $ -recursive functions. It is proved that, for prenex sentences provable (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  33.  25
    On axiom schemes for T-provably $${\Delta_{1}}$$ Δ 1 formulas.A. Cordón-Franco, A. Fernández-Margarit & F. F. Lara-Martín - 2014 - Archive for Mathematical Logic 53 (3):327-349.
    This paper investigates the status of the fragments of Peano Arithmetic obtained by restricting induction, collection and least number axiom schemes to formulas which are $${\Delta_1}$$ provably in an arithmetic theory T. In particular, we determine the provably total computable functions of this kind of theories. As an application, we obtain a reduction of the problem whether $${I\Delta_0 + \neg \mathit{exp}}$$ implies $${B\Sigma_1}$$ to a purely recursion-theoretic question.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  34.  40
    (1 other version)Sometimes slow growing is fast growing.Andreas Weiermann - 1997 - Annals of Pure and Applied Logic 90 (1-3):91-99.
    The slow growing hierarchy is commonly defined as follows: G0 = 0, Gx−1 := Gx + 1 and Gλ := Gλ[x] where λ<0 is a limit and ·[·]:0∩ Lim × ω → 0 is a given assignment of fundamental sequences for the limits below 0. The first obvious question which is encountered when one looks at this definition is: How does this hierarchy depend on the choice of the underlying system of fundamental sequences? Of course, it is well known and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  35.  65
    Induction and Inductive Definitions in Fragments of Second Order Arithmetic.Klaus Aehlig - 2005 - Journal of Symbolic Logic 70 (4):1087 - 1107.
    A fragment with the same provably recursive functions as n iterated inductive definitions is obtained by restricting second order arithmetic in the following way. The underlying language allows only up to n + 1 nested second order quantifications and those are in such a way, that no second order variable occurs free in the scope of another second order quantifier. The amount of induction on arithmetical formulae only affects the arithmetical consequences of these theories, whereas adding induction (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  32
    Transfinite induction within Peano arithmetic.Richard Sommer - 1995 - Annals of Pure and Applied Logic 76 (3):231-289.
    The relative strengths of first-order theories axiomatized by transfinite induction, for ordinals less-than 0, and formulas restricted in quantifier complexity, is determined. This is done, in part, by describing the provably recursive functions of such theories. Upper bounds for the provably recursive functions are obtained using model-theoretic techniques. A variety of additional results that come as an application of such techniques are mentioned.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  37.  68
    (3 other versions)Fragments of $HA$ based on $\Sigma_1$ -induction.Kai F. Wehmeier - 1997 - Archive for Mathematical Logic 37 (1):37-49.
    In the first part of this paper we investigate the intuitionistic version $iI\!\Sigma_1$ of $I\!\Sigma_1$ (in the language of $PRA$ ), using Kleene's recursive realizability techniques. Our treatment closely parallels the usual one for $HA$ and establishes a number of nice properties for $iI\!\Sigma_1$ , e.g. existence of primitive recursive choice functions (this is established by different means also in [D94]). We then sharpen an unpublished theorem of Visser's to the effect that quantifier alternation alone is much (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  38.  26
    Introduction to clarithmetic III.Giorgi Japaridze - 2014 - Annals of Pure and Applied Logic 165 (1):241-252.
    The present paper constructs three new systems of clarithmetic : CLA8, CLA9 and CLA10. System CLA8 is shown to be sound and extensionally complete with respect to PA-provably recursive time computability. This is in the sense that an arithmetical problem A has a τ-time solution for some PA-provably recursive function τ iff A is represented by some theorem of CLA8. System CLA9 is shown to be sound and intensionally complete with respect to constructively PA-provable computability. This (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Classifying positive equivalence relations.Claudio Bernardi & Andrea Sorbi - 1983 - Journal of Symbolic Logic 48 (3):529-538.
    Given two (positive) equivalence relations ∼ 1 , ∼ 2 on the set ω of natural numbers, we say that ∼ 1 is m-reducible to ∼ 2 if there exists a total recursive function h such that for every x, y ∈ ω, we have $x \sim_1 y \operatorname{iff} hx \sim_2 hy$ . We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a "uniformity property" holds). (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  40.  40
    A Counterexample to Polynomially Bounded Realizability of Basic Arithmetic.Mohammad Ardeshir, Erfan Khaniki & Mohsen Shahriari - 2019 - Notre Dame Journal of Formal Logic 60 (3):481-489.
    We give a counterexample to the claim that every provably total function of Basic Arithmetic is a polynomially bounded primitive recursive function.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  53
    Term extraction and Ramsey's theorem for pairs.Alexander P. Kreuzer & Ulrich Kohlenbach - 2012 - Journal of Symbolic Logic 77 (3):853-895.
    In this paper we study with proof-theoretic methods the function(al) s provably recursive relative to Ramsey's theorem for pairs and the cohesive principle (COH). Our main result on COH is that the type 2 functional provably recursive from $RCA_0 + COH + \Pi _1^0 - CP$ are primitive recursive. This also provides a uniform method to extract bounds from proofs that use these principles. As a consequence we obtain a new proof of the fact that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Recent advances in ordinal analysis: Π 21-CA and related systems.Michael Rathjen - 1995 - Bulletin of Symbolic Logic 1 (4):468 - 485.
    §1. Introduction. The purpose of this paper is, in general, to report the state of the art of ordinal analysis and, in particular, the recent success in obtaining an ordinal analysis for the system of -analysis, which is the subsystem of formal second order arithmetic, Z2, with comprehension confined to -formulae. The same techniques can be used to provide ordinal analyses for theories that are reducible to iterated -comprehension, e.g., -comprehension. The details will be laid out in [28].Ordinal-theoretic proof theory (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  43.  25
    Church's Thesis After 70 Years.Adam Olszewski, Jan Wolenski & Robert Janusz (eds.) - 2006 - Ontos Verlag.
    Church's Thesis (CT) was first published by Alonzo Church in 1935. CT is a proposition that identifies two notions: an intuitive notion of an effectively computable function defined in natural numbers with the notion of a recursive function. Despite the many efforts of prominent scientists, Church's Thesis has never been disproven. There exists a vast literature concerning the thesis. The aim of this book is to provide a one volume summary of the state of research on Church's Thesis. These (...)
  44.  17
    Recursive functionals.Luis E. Sanchis - 1992 - New York: North-Holland.
    This work is a self-contained elementary exposition of the theory of recursive functionals, that also includes a number of advanced results.
    Direct download  
     
    Export citation  
     
    Bookmark  
  45.  27
    Uniform Density in Lindenbaum Algebras.V. Yu Shavrukov & Albert Visser - 2014 - Notre Dame Journal of Formal Logic 55 (4):569-582.
    In this paper we prove that the preordering $\lesssim $ of provable implication over any recursively enumerable theory $T$ containing a modicum of arithmetic is uniformly dense. This means that we can find a recursive extensional density function $F$ for $\lesssim $. A recursive function $F$ is a density function if it computes, for $A$ and $B$ with $A\lnsim B$, an element $C$ such that $A\lnsim C\lnsim B$. The function is extensional if it preserves $T$-provable equivalence. Secondly, we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  46.  86
    What Finitism Could Not Be.Matthias Schirn & Karl-Georg Niebergall - 2003 - Critica 35 (103):43-68.
    In his paper "Finitism", W.W. Tait maintains that the chief difficulty for everyone who wishes to understand Hilbert's conception of finitist mathematics is this: to specify the sense of the provability of general statements about the natural numbers without presupposing infinite totalities. Tait further argues that all finitist reasoning is essentially primitive recursive. In this paper, we attempt to show that his thesis "The finitist functions are precisely the primitive recursive functions" is disputable and that another, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  47.  54
    A formalization of Sambins's normalization for GL.Edward Hermann Haeusler & Luiz Carlos Pereira - 1993 - Mathematical Logic Quarterly 39 (1):133-142.
    Sambin [6] proved the normalization theorem for GL, the modal logic of provability, in a sequent calculus version called by him GLS. His proof does not take into account the concept of reduction, commonly used in normalization proofs. Bellini [1], on the other hand, gave a normalization proof for GL using reductions. Indeed, Sambin's proof is a decision procedure which builds cut-free proofs. In this work we formalize this procedure as a recursive function and prove its recursiveness in an (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  48. Finitism = PRA? On a Thesis of W.W. Tait.Matthias Schirn & Karl-Georg Niebergall - 2005 - Reports on Mathematical Logic:3-24.
    In his paper `Finitism', W.W.~Tait maintained that the chief difficulty for everyone who wishes to understand Hilbert's conception of finitist mathematics is this: to specify the sense of the provability of general statements about the natural numbers without presupposing infinite totalities. Tait further argued that all finitist reasoning is essentially primitive recursive. In our paper, we attempt to show that his thesis ``The finitist functions are precisely the primitive recursive functions'' is disputable and that another, likewise (...)
     
    Export citation  
     
    Bookmark  
  49.  35
    Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  50.  40
    A Simple Proof of Parsons' Theorem.Fernando Ferreira - 2005 - Notre Dame Journal of Formal Logic 46 (1):83-91.
    Let be the fragment of elementary Peano arithmetic in which induction is restricted to -formulas. More than three decades ago, Parsons showed that the provably total functions of are exactly the primitive recursive functions. In this paper, we observe that Parsons' result is a consequence of Herbrand's theorem concerning the -consequences of universal theories. We give a self-contained proof requiring only basic knowledge of mathematical logic.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 963