Results for 'Pseudocompactness'

7 found
Order:
  1.  45
    Ultrafilters, monotone functions and pseudocompactness.M. Hrušák, M. Sanchis & Á Tamariz-Mascarúa - 2005 - Archive for Mathematical Logic 44 (2):131-157.
    In this article we, given a free ultrafilter p on ω, consider the following classes of ultrafilters:(1) T(p) - the set of ultrafilters Rudin-Keisler equivalent to p,(2) S(p)={q ∈ ω*:∃ f ∈ ω ω , strictly increasing, such that q=f β (p)},(3) I(p) - the set of strong Rudin-Blass predecessors of p,(4) R(p) - the set of ultrafilters equivalent to p in the strong Rudin-Blass order,(5) P RB (p) - the set of Rudin-Blass predecessors of p, and(6) P RK (p) (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  62
    The Pseudocompactness of [0.1] Is Equivalent to the Uniform Continuity Theorem.Douglas Bridges & Hannes Diener - 2007 - Journal of Symbolic Logic 72 (4):1379 - 1384.
    We prove constructively that, in order to derive the uniform continuity theorem for pointwise continuous mappings from a compact metric space into a metric space, it is necessary and sufficient to prove any of a number of equivalent conditions, such as that every pointwise continuous mapping of [0, 1] into R is bounded. The proofs are analytic, making no use of, for example, fan-theoretic ideas.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  3.  54
    Pseudofinite and Pseudocompact Metric Structures.Isaac Goldbring & Vinicius Cifú Lopes - 2015 - Notre Dame Journal of Formal Logic 56 (3):493-510.
    The definition of a pseudofinite structure can be translated verbatim into continuous logic, but it also gives rise to a stronger notion and to two parallel concepts of pseudocompactness. Our purpose is to investigate the relationship between these four concepts and establish or refute each of them for several basic theories in continuous logic. Pseudofiniteness and pseudocompactness turn out to be equivalent for relational languages with constant symbols, and the four notions coincide with the standard pseudofiniteness in the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  4.  43
    Two applications of topology to model theory.Christopher J. Eagle, Clovis Hamel & Franklin D. Tall - 2021 - Annals of Pure and Applied Logic 172 (5):102907.
    By utilizing the topological concept of pseudocompactness, we simplify and improve a proof of Caicedo, Dueñez, and Iovino concerning Terence Tao's metastability. We also pinpoint the exact relationship between the Omitting Types Theorem and the Baire Category Theorem by developing a machine that turns topological spaces into abstract logics.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  3
    New Results in Model Theory and Set Theory.Clovis Hamel - 2024 - Bulletin of Symbolic Logic 30 (4):543-544.
    Traditionally, the role of general topology in model theory has been mainly limited to the study of compacta that arise in first-order logic. In this context, the topology tends to be so trivial that it turns into combinatorics, motivating a widespread approach that focuses on the combinatorial component while usually hiding the topological one. This popular combinatorial approach to model theory has proved to be so useful that it has become rare to see more advanced topology in model-theoretic articles. Prof. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  4
    The Shape of Compact Covers.Ziqin Feng & Paul Gartside - forthcoming - Journal of Symbolic Logic:1-15.
    For a space X let $\mathcal {K}(X)$ be the set of compact subsets of X ordered by inclusion. A map $\phi :\mathcal {K}(X) \to \mathcal {K}(Y)$ is a relative Tukey quotient if it carries compact covers to compact covers. When there is such a Tukey quotient write $(X,\mathcal {K}(X)) \ge _T (Y,\mathcal {K}(Y))$, and write $(X,\mathcal {K}(X)) =_T (Y,\mathcal {K}(Y))$ if $(X,\mathcal {K}(X)) \ge _T (Y,\mathcal {K}(Y))$ and vice versa. We investigate the initial structure of pairs $(X,\mathcal {K}(X))$ under the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7. Countably Compact Extensions and Cardinal Characteristics of the Continuum.Serhii Bardyla, Peter Nyikos & Lyubomyr Zdomskyy - forthcoming - Journal of Symbolic Logic:1-27.
    In this paper, we show that the existence of certain first-countable compact-like extensions is equivalent to the equality between corresponding cardinal characteristics of the continuum. For instance, $\mathfrak b=\mathfrak s=\mathfrak c$ if and only if every regular first-countable space of weight $< \mathfrak c$ can be densely embedded into a regular first-countable countably compact space.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark