Results for 'Sequent'

867 found
Order:
  1. François Lepage, Elias Thijsse, Heinrich Wansing/In-troduction 1 J. Michael Dunn/Partiality and its Dual 5 Jan van Eijck/Making Things Happen 41 William M. Farmer, Joshua D. Guttman/A Set Theory. [REVIEW]René Lavendhomme, Thierry Lucas & Sequent Calculi - 2000 - Studia Logica 66:447-448.
  2.  35
    New sequent calculi for Visser's Formal Propositional Logic.Katsumasa Ishii - 2003 - Mathematical Logic Quarterly 49 (5):525.
    Two cut-free sequent calculi which are conservative extensions of Visser's Formal Propositional Logic are introduced. These satisfy a kind of subformula property and by this property the interpolation theorem for FPL are proved. These are analogies to Aghaei-Ardeshir's calculi for Visser's Basic Propositional Logic.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  24
    Nested sequents for intermediate logics: the case of Gödel-Dummett logics.Tim S. Lyon - 2023 - Journal of Applied Non-Classical Logics 33 (2):121-164.
    We present nested sequent systems for propositional Gödel-Dummett logic and its first-order extensions with non-constant and constant domains, built atop nested calculi for intuitionistic logics. To obtain nested systems for these Gödel-Dummett logics, we introduce a new structural rule, called the linearity rule, which (bottom-up) operates by linearising branching structure in a given nested sequent. In addition, an interesting feature of our calculi is the inclusion of reachability rules, which are special logical rules that operate by propagating data (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  22
    A Sequent Systems without Improper Derivations.Katsumi Sasaki - 2022 - Bulletin of the Section of Logic 51 (1):91-108.
    In the natural deduction system for classical propositional logic given by G. Gentzen, there are some inference rules with assumptions discharged by the rule. D. Prawitz calls such inference rules improper, and others proper. Improper inference rules are more complicated and are often harder to understand than the proper ones. In the present paper, we distinguish between proper and improper derivations by using sequent systems. Specifically, we introduce a sequent system \(\vdash_{\bf Sc}\) for classical propositional logic with only (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  23
    Minimal Sequent Calculi for Łukasiewicz’s Finitely-Valued Logics.Alexej P. Pynko - 2015 - Bulletin of the Section of Logic 44 (3/4):149-153.
    The primary objective of this paper, which is an addendum to the author’s [8], is to apply the general study of the latter to Łukasiewicz’s n-valued logics [4]. The paper provides an analytical expression of a 2(n−1)-place sequent calculus (in the sense of [10, 9]) with the cut-elimination property and a strong completeness with respect to the logic involved which is most compact among similar calculi in the sense of a complexity of systems of premises of introduction rules. This (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  6.  52
    Sequent-Calculi for Metainferential Logics.Bruno Da Ré & Federico Pailos - 2021 - Studia Logica 110 (2):319-353.
    In recent years, some theorists have argued that the clogics are not only defined by their inferences, but also by their metainferences. In this sense, logics that coincide in their inferences, but not in their metainferences were considered to be different. In this vein, some metainferential logics have been developed, as logics with metainferences of any level, built as hierarchies over known logics, such as \, and \. What is distinctive of these metainferential logics is that they are mixed, i.e. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  7.  46
    Labeled sequent calculi for modal logics and implicit contractions.Pierluigi Minari - 2013 - Archive for Mathematical Logic 52 (7-8):881-907.
    The paper settles an open question concerning Negri-style labeled sequent calculi for modal logics and also, indirectly, other proof systems which make (more or less) explicit use of semantic parameters in the syntax and are thus subsumed by labeled calculi, like Brünnler’s deep sequent calculi, Poggiolesi’s tree-hypersequent calculi and Fitting’s prefixed tableau systems. Specifically, the main result we prove (through a semantic argument) is that labeled calculi for the modal logics K and D remain complete w.r.t. valid sequents (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  69
    Sequent calculi and decision procedures for weak modal systems.René Lavendhomme & Thierry Lucas - 2000 - Studia Logica 66 (1):121-145.
    We investigate sequent calculi for the weak modal (propositional) system reduced to the equivalence rule and extensions of it up to the full Kripke system containing monotonicity, conjunction and necessitation rules. The calculi have cut elimination and we concentrate on the inversion of rules to give in each case an effective procedure which for every sequent either furnishes a proof or a finite countermodel of it. Applications to the cardinality of countermodels, the inversion of rules and the derivability (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  9.  37
    Sequents for non-wellfounded mereology.Paolo Maffezioli - 2016 - Logic and Logical Philosophy 25 (3):351-369.
    The paper explores the proof theory of non-wellfounded mereology with binary fusions and provides a cut-free sequent calculus equivalent to the standard axiomatic system.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  53
    Labelled Sequent Calculi for Lewis’ Non-normal Propositional Modal Logics.Matteo Tesi - 2020 - Studia Logica 109 (4):725-757.
    C. I. Lewis’ systems were the first axiomatisations of modal logics. However some of those systems are non-normal modal logics, since they do not admit a full rule of necessitation, but only a restricted version thereof. We provide G3-style labelled sequent calculi for Lewis’ non-normal propositional systems. The calculi enjoy good structural properties, namely admissibility of structural rules and admissibility of cut. Furthermore they allow for straightforward proofs of admissibility of the restricted versions of the necessitation rule. We establish (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  11.  61
    A Sequent Calculus for Urn Logic.Rohan French - 2015 - Journal of Logic, Language and Information 24 (2):131-147.
    Approximately speaking, an urn model for first-order logic is a model where the domain of quantification changes depending on the values of variables which have been bound by quantifiers previously. In this paper we introduce a model-changing semantics for urn-models, and then give a sequent calculus for urn logic by introducing formulas which can be read as saying that “after the individuals a1,..., an have been drawn, A is the case”.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  73
    Modular Sequent Calculi for Classical Modal Logics.David R. Gilbert & Paolo Maffezioli - 2015 - Studia Logica 103 (1):175-217.
    This paper develops sequent calculi for several classical modal logics. Utilizing a polymodal translation of the standard modal language, we are able to establish a base system for the minimal classical modal logic E from which we generate extensions in a modular manner. Our systems admit contraction and cut admissibility, and allow a systematic proof-search procedure of formal derivations.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  13.  22
    Sequent Calculi for First-order $$\textrm{ST}$$.Francesco Paoli & Adam Přenosil - 2024 - Journal of Philosophical Logic 53 (5):1291-1320.
    Strict-Tolerant Logic ($$\textrm{ST}$$ ST ) underpins naïve theories of truth and vagueness (respectively including a fully disquotational truth predicate and an unrestricted tolerance principle) without jettisoning any classically valid laws. The classical sequent calculus without Cut is sometimes advocated as an appropriate proof-theoretic presentation of $$\textrm{ST}$$ ST. Unfortunately, there is only a partial correspondence between its derivability relation and the relation of local metainferential $$\textrm{ST}$$ ST -validity – these relations coincide only upon the addition of elimination rules and only (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  41
    Sequent Systems for Negative Modalities.Ori Lahav, João Marcos & Yoni Zohar - 2017 - Logica Universalis 11 (3):345-382.
    Non-classical negations may fail to be contradictory-forming operators in more than one way, and they often fail also to respect fundamental meta-logical properties such as the replacement property. Such drawbacks are witnessed by intricate semantics and proof systems, whose philosophical interpretations and computational properties are found wanting. In this paper we investigate congruential non-classical negations that live inside very natural systems of normal modal logics over complete distributive lattices; these logics are further enriched by adjustment connectives that may be used (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  52
    Sequent-based logical argumentation.Ofer Arieli & Christian Straßer - 2015 - Argument and Computation 6 (1):73-99.
    We introduce a general approach for representing and reasoning with argumentation-based systems. In our framework arguments are represented by Gentzen-style sequents, attacks between arguments are represented by sequent elimination rules, and deductions are made according to Dung-style skeptical or credulous semantics. This framework accommodates different languages and logics in which arguments may be represented, allows for a flexible and simple way of expressing and identifying arguments, supports a variety of attack relations, and is faithful to standard methods of drawing (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  16.  48
    Sequent Calculi for the Propositional Logic of HYPE.Martin Fischer - 2021 - Studia Logica 110 (3):1-35.
    In this paper we discuss sequent calculi for the propositional fragment of the logic of HYPE. The logic of HYPE was recently suggested by Leitgeb as a logic for hyperintensional contexts. On the one hand we introduce a simple \-system employing rules of contraposition. On the other hand we present a \-system with an admissible rule of contraposition. Both systems are equivalent as well as sound and complete proof-system of HYPE. In order to provide a cut-elimination procedure, we expand (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  40
    Sequent Calculi for Visser's Propositional Logics.Kentaro Kikuchi & Ryo Kashima - 2001 - Notre Dame Journal of Formal Logic 42 (1):1-22.
    This paper introduces sequent systems for Visser's two propositional logics: Basic Propositional Logic (BPL) and Formal Propositional Logic (FPL). It is shown through semantical completeness that the cut rule is admissible in each system. The relationships with Hilbert-style axiomatizations and with other sequent formulations are discussed. The cut-elimination theorems are also demonstrated by syntactical methods.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. Much (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  19.  34
    Glivenko sequent classes and constructive cut elimination in geometric logics.Giulio Fellin, Sara Negri & Eugenio Orlandelli - 2023 - Archive for Mathematical Logic 62 (5):657-688.
    A constructivisation of the cut-elimination proof for sequent calculi for classical, intuitionistic and minimal infinitary logics with geometric rules—given in earlier work by the second author—is presented. This is achieved through a procedure where the non-constructive transfinite induction on the commutative sum of ordinals is replaced by two instances of Brouwer’s Bar Induction. The proof of admissibility of the structural rules is made ordinal-free by introducing a new well-founded relation based on a notion of embeddability of derivations. Additionally, conservativity (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  20.  41
    Labeled sequent calculus for justification logics.Meghdad Ghari - 2017 - Annals of Pure and Applied Logic 168 (1):72-111.
    Justification logics are modal-like logics that provide a framework for reasoning about justifications. This paper introduces labeled sequent calculi for justification logics, as well as for combined modal-justification logics. Using a method due to Sara Negri, we internalize the Kripke-style semantics of justification and modal-justification logics, known as Fitting models, within the syntax of the sequent calculus to produce labeled sequent calculi. We show that all rules of these systems are invertible and the structural rules (weakening and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  21.  51
    DEL-sequents for regression and epistemic planning.Guillaume Aucher - 2012 - Journal of Applied Non-Classical Logics 22 (4):337 - 367.
    (2012). DEL-sequents for regression and epistemic planning. Journal of Applied Non-Classical Logics: Vol. 22, No. 4, pp. 337-367. doi: 10.1080/11663081.2012.736703.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  22.  25
    Modal sequents for normal modal logics.Claudio Cerrato - 1993 - Mathematical Logic Quarterly 39 (1):231-240.
    We present sequent calculi for normal modal logics where modal and propositional behaviours are separated, and we prove a cut elimination theorem for the basic system K, so as completeness theorems both for K itself and for its most popular enrichments. MSC: 03B45, 03F05.
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  40
    Glivenko sequent classes in the light of structural proof theory.Sara Negri - 2016 - Archive for Mathematical Logic 55 (3-4):461-473.
    In 1968, Orevkov presented proofs of conservativity of classical over intuitionistic and minimal predicate logic with equality for seven classes of sequents, what are known as Glivenko classes. The proofs of these results, important in the literature on the constructive content of classical theories, have remained somehow cryptic. In this paper, direct proofs for more general extensions are given for each class by exploiting the structural properties of G3 sequent calculi; for five of the seven classes the results are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  24.  32
    Modal Sequent Calculi Labelled with Truth Values: Completeness, Duality and Analyticity.Paulo Mateus, Amílcar Sernadas, Cristina Sernadas & Luca Viganò - 2004 - Logic Journal of the IGPL 12 (3):227-274.
    Labelled sequent calculi are provided for a wide class of normal modal systems using truth values as labels. The rules for formula constructors are common to all modal systems. For each modal system, specific rules for truth values are provided that reflect the envisaged properties of the accessibility relation. Both local and global reasoning are supported. Strong completeness is proved for a natural two-sorted algebraic semantics. As a corollary, strong completeness is also obtained over general Kripke semantics. A duality (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  25.  29
    Sequent systems for compact bilinear logic.Wojciech Buszkowski - 2003 - Mathematical Logic Quarterly 49 (5):467.
    Compact Bilinear Logic , introduced by Lambek [14], arises from the multiplicative fragment of Noncommutative Linear Logic of Abrusci [1] by identifying times with par and 0 with 1. In this paper, we present two sequent systems for CBL and prove the cut-elimination theorem for them. We also discuss a connection between cut-elimination for CBL and the Switching Lemma from [14].
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  26.  19
    Sequent-type rejection systems for finite-valued non-deterministic logics.Martin Gius & Hans Tompits - 2023 - Journal of Applied Non-Classical Logics 33 (3):606-640.
    A rejection system, also referred to as a complementary calculus, is a proof system axiomatising the invalid formulas of a logic, in contrast to traditional calculi which axiomatise the valid ones. Rejection systems therefore introduce a purely syntactic way of determining non-validity without having to consider countermodels, which can be useful in procedures for automated deduction and proof search. Rejection calculi have first been formally introduced by Łukasiewicz in the context of Aristotelian syllogistic and subsequently rejection systems for many well-known (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  33
    Sequent reconstruction in LLM—A sweepline proof.R. Banach - 1995 - Annals of Pure and Applied Logic 73 (3):277-295.
    An alternative proof is given that to each LLM proof net there corresponds at least one LLM sequent proof. The construction is inspired by the sweepline technique from computational geometry and includes a treatment of the multiplicative constants and of proof boxes.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  49
    Sequent Calculi for Global Modal Consequence Relations.Minghui Ma & Jinsheng Chen - 2019 - Studia Logica 107 (4):613-637.
    The global consequence relation of a normal modal logic \ is formulated as a global sequent calculus which extends the local sequent theory of \ with global sequent rules. All global sequent calculi of normal modal logics admits global cut elimination. This property is utilized to show that decidability is preserved from the local to global sequent theories of any normal modal logic over \. The preservation of Craig interpolation property from local to global (...) theories of any normal modal logic is shown by proof-theoretic method. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  20
    Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic.Diego Castaño & Juan Manuel Cornejo - 2016 - Studia Logica 104 (6):1245-1265.
    The variety \ of semi-Heyting algebras was introduced by H. P. Sankappanavar [13] as an abstraction of the variety of Heyting algebras. Semi-Heyting algebras are the algebraic models for a logic HsH, known as semi-intuitionistic logic, which is equivalent to the one defined by a Hilbert style calculus in Cornejo :9–25, 2011) [6]. In this article we introduce a Gentzen style sequent calculus GsH for the semi-intuitionistic logic whose associated logic GsH is the same as HsH. The advantage of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30.  51
    2-Sequent calculus: a proof theory of modalities.Andrea Masini - 1992 - Annals of Pure and Applied Logic 58 (3):229-246.
    Masini, A., 2-Sequent calculus: a proof theory of modalities, Annals of Pure and Applied Logic 58 229–246. In this work we propose an extension of the Getzen sequent calculus in order to deal with modalities. We extend the notion of a sequent obtaining what we call a 2-sequent. For the obtained calculus we prove a cut elimination theorem.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  31.  51
    Free Definite Description Theory – Sequent Calculi and Cut Elimination.Andrzej Indrzejczak - forthcoming - Logic and Logical Philosophy:1.
    We provide an application of a sequent calculus framework to the formalization of definite descriptions. It is a continuation of research undertaken in [20, 22]. In the present paper a so-called free description theory is examined in the context of different kinds of free logic, including systems applied in computer science and constructive mathematics for dealing with partial functions. It is shown that the same theory in different logics may be formalised by means of different rules and gives results (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  32.  58
    Sequent calculus proof theory of intuitionistic apartness and order relations.Sara Negri - 1999 - Archive for Mathematical Logic 38 (8):521-547.
    Contraction-free sequent calculi for intuitionistic theories of apartness and order are given and cut-elimination for the calculi proved. Among the consequences of the result is the disjunction property for these theories. Through methods of proof analysis and permutation of rules, we establish conservativity of the theory of apartness over the theory of equality defined as the negation of apartness, for sequents in which all atomic formulas appear negated. The proof extends to conservativity results for the theories of constructive order (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  33.  63
    Sequent-systems and groupoid models. I.Kosta Došen - 1988 - Studia Logica 47 (4):353 - 385.
    The purpose of this paper is to connect the proof theory and the model theory of a family of propositional logics weaker than Heyting's. This family includes systems analogous to the Lambek calculus of syntactic categories, systems of relevant logic, systems related toBCK algebras, and, finally, Johansson's and Heyting's logic. First, sequent-systems are given for these logics, and cut-elimination results are proved. In these sequent-systems the rules for the logical operations are never changed: all changes are made in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  34.  78
    A sequent formulation of conditional logic based on belief change operations.Peter Roeper - 2004 - Studia Logica 77 (3):425 - 438.
    Peter Gärdenfors has developed a semantics for conditional logic, based on the operations of expansion and revision applied to states of information. The account amounts to a formalisation of the Ramsey test for conditionals. A conditional A > B is declared accepted in a state of information K if B is accepted in the state of information which is the result of revising K with respect to A. While Gärdenfors's account takes the truth-functional part of the logic as given, the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  76
    Gentzen sequent calculi for some intuitionistic modal logics.Zhe Lin & Minghui Ma - 2019 - Logic Journal of the IGPL 27 (4):596-623.
    Intuitionistic modal logics are extensions of intuitionistic propositional logic with modal axioms. We treat with two modal languages ${\mathscr{L}}_\Diamond $ and $\mathscr{L}_{\Diamond,\Box }$ which extend the intuitionistic propositional language with $\Diamond $ and $\Diamond,\Box $, respectively. Gentzen sequent calculi are established for several intuitionistic modal logics. In particular, we introduce a Gentzen sequent calculus for the well-known intuitionistic modal logic $\textsf{MIPC}$. These sequent calculi admit cut elimination and subformula property. They are decidable.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  15
    Modal Sequent Calculi Labelled with Truth Values: Cut Elimination.Paulo Mateus, João Rasga & Cristina Sernadas - 2005 - Logic Journal of the IGPL 13 (2):173-199.
    Cut elimination is shown, in a constructive way, to hold in sequent calculi labelled with truth values for a wide class of normal modal logics, supporting global and local reasoning and allowing a general frame semantics. The complexity of cut elimination is studied in terms of the increase of logical depth of the derivations. A hyperexponential worst case bound is established. The subformula property and a similar property for the label terms are shown to be satisfied by that class (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37.  39
    Sequent calculus for 3-valued paraconsistent logic QMPT0.Naoyuki Nide, Yuki Goto & Megumi Fujita - 2019 - Logic Journal of the IGPL 27 (4):507-521.
    We present a sequent calculus of a paraconsistent logic QMPT0, which has the paraconsistent-type excluded middle law (PEML) as an initial sequent. Our system shows that the presence of PEML is essentially important for QMPT0. It also has special rules when the set of constant symbols is finite. We also discuss the cut-elimination property of our system.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38.  55
    Modal sequents and definability.Bruce M. Kapron - 1987 - Journal of Symbolic Logic 52 (3):756-762.
    The language of propositional modal logic is extended by the introduction of sequents. Validity of a modal sequent on a frame is defined, and modal sequent-axiomatic classes of frames are introduced. Through the use of modal algebras and general frames, a study of the properties of such classes is begun.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39.  97
    Sequent calculi for some trilattice logics.Norihiro Kamide & Heinrich Wansing - 2009 - Review of Symbolic Logic 2 (2):374-395.
    The trilattice SIXTEEN3 introduced in Shramko & Wansing (2005) is a natural generalization of the famous bilattice FOUR2. Some Hilbert-style proof systems for trilattice logics related to SIXTEEN3 have recently been studied (Odintsov, 2009; Shramko & Wansing, 2005). In this paper, three sequent calculi GB, FB, and QB are presented for Odintsovs coordinate valuations associated with valuations in SIXTEEN3. The equivalence between GB, FB, and QB, the cut-elimination theorems for these calculi, and the decidability of B are proved. In (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  40.  12
    Sequent Systems for Consequence Relations of Cyclic Linear Logics.Paweł Płaczek - 2024 - Bulletin of the Section of Logic 53 (2):245-274.
    Linear Logic is a versatile framework with diverse applications in computer science and mathematics. One intriguing fragment of Linear Logic is Multiplicative-Additive Linear Logic (MALL), which forms the exponential-free component of the larger framework. Modifying MALL, researchers have explored weaker logics such as Noncommutative MALL (Bilinear Logic, BL) and Cyclic MALL (CyMALL) to investigate variations in commutativity. In this paper, we focus on Cyclic Nonassociative Bilinear Logic (CyNBL), a variant that combines noncommutativity and nonassociativity. We introduce a sequent system (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41. Prefixed tableaus and nested sequents.Melvin Fitting - 2012 - Annals of Pure and Applied Logic 163 (3):291 - 313.
    Nested sequent systems for modal logics are a relatively recent development, within the general area known as deep reasoning. The idea of deep reasoning is to create systems within which one operates at lower levels in formulas than just those involving the main connective or operator. Prefixed tableaus go back to 1972, and are modal tableau systems with extra machinery to represent accessibility in a purely syntactic way. We show that modal nested sequents and prefixed modal tableaus are notational (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  42.  56
    Sequent-systems and groupoid models. II.Kosta Došen - 1989 - Studia Logica 48 (1):41 - 65.
    The purpose of this paper is to connect the proof theory and the model theory of a family of prepositional logics weaker than Heyting's. This family includes systems analogous to the Lambek calculus of syntactic categories, systems of relevant logic, systems related to BCK algebras, and, finally, Johansson's and Heyting's logic. First, sequent-systems are given for these logics, and cut-elimination results are proved. In these sequent-systems the rules for the logical operations are never changed: all changes are made (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  43.  57
    Sequent Calculi for Semi-De Morgan and De Morgan Algebras.Minghui Ma & Fei Liang - 2018 - Studia Logica 106 (3):565-593.
    A contraction-free and cut-free sequent calculus \ for semi-De Morgan algebras, and a structural-rule-free and single-succedent sequent calculus \ for De Morgan algebras are developed. The cut rule is admissible in both sequent calculi. Both calculi enjoy the decidability and Craig interpolation. The sequent calculi are applied to prove some embedding theorems: \ is embedded into \ via Gödel–Gentzen translation. \ is embedded into a sequent calculus for classical propositional logic. \ is embedded into the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  78
    Distributive-lattice semantics of sequent calculi with structural rules.Alexej P. Pynko - 2009 - Logica Universalis 3 (1):59-94.
    The goal of the paper is to develop a universal semantic approach to derivable rules of propositional multiple-conclusion sequent calculi with structural rules, which explicitly involve not only atomic formulas, treated as metavariables for formulas, but also formula set variables, upon the basis of the conception of model introduced in :27–37, 2001). One of the main results of the paper is that any regular sequent calculus with structural rules has such class of sequent models that a rule (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Sequent calculus in natural deduction style.Sara Negri & Jan von Plato - 2001 - Journal of Symbolic Logic 66 (4):1803-1816.
    A sequent calculus is given in which the management of weakening and contraction is organized as in natural deduction. The latter has no explicit weakening or contraction, but vacuous and multiple discharges in rules that discharge assumptions. A comparison to natural deduction is given through translation of derivations between the two systems. It is proved that if a cut formula is never principal in a derivation leading to the right premiss of cut, it is a subformula of the conclusion. (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  46.  78
    A sequent calculus isomorphic to gentzen’s natural deduction.Jan von Plato - 2011 - Review of Symbolic Logic 4 (1):43-53.
    Gentzens natural deduction. Thereby the appearance of the cuts in translation is explained.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  47. Sequent Calculi for $${\mathsf {SCI}}$$ SCI.Szymon Chlebowski - 2018 - Studia Logica 106 (3):541-563.
    In this paper we are applying certain strategy described by Negri and Von Plato :418–435, 1998), allowing construction of sequent calculi for axiomatic theories, to Suszko’s Sentential calculus with identity. We describe two calculi obtained in this way, prove that the cut rule, as well as the other structural rules, are admissible in one of them, and we also present an example which suggests that the cut rule is not admissible in the other.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Dual Systems of Sequents and Tableaux for Many-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Bulletin of the EATCS 51:192-197.
    The aim of this paper is to emphasize the fact that for all finitely-many-valued logics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth value (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  49.  20
    Um Cálculo de Sequentes a Partir Do Sistema Trivalente e Fracamente Intuicionista I1.Elias Oliveira Vieira dos Santos & Luiz Henrique da Cruz Silvestrini - 2023 - Kínesis - Revista de Estudos Dos Pós-Graduandos Em Filosofia 15 (38):174-206.
    A lógica I1, um sistema trivalorado de caráter fracamente intuicionista, foi introduzida, via sistema axiomático (Hilbertiano) em 1995 por Sette e Carnielli. O presente artigo tem por objetivo apresentar esse sistema em um formalismo lógico em Cálculo de Sequentes, denominado de GI1, o qual se apresenta como um sistema de prova de teoremas, caracterizado como um algoritmo, sendo mais aplicável do ponto de vista computacional, por meio da dualização do sistema de tableaux analíticos TI1. Ademais, é apresentado a equivalência dedutiva (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  93
    Sequent-systems for modal logic.Kosta Došen - 1985 - Journal of Symbolic Logic 50 (1):149-168.
    The purpose of this work is to present Gentzen-style formulations of S5 and S4 based on sequents of higher levels. Sequents of level 1 are like ordinary sequents, sequents of level 1 have collections of sequents of level 1 on the left and right of the turnstile, etc. Rules for modal constants involve sequents of level 2, whereas rules for customary logical constants of first-order logic with identity involve only sequents of level 1. A restriction on Thinning on the right (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   28 citations  
1 — 50 / 867