Results for 'Singular cardinal hypothesis'

973 found
Order:
  1.  47
    Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  2.  58
    The negation of the singular cardinal hypothesis from o(K)=K++.Moti Gitik - 1989 - Annals of Pure and Applied Logic 43 (3):209-234.
  3.  40
    The proper forcing axiom, Prikry forcing, and the singular cardinals hypothesis.Justin Tatch Moore - 2006 - Annals of Pure and Applied Logic 140 (1):128-132.
    The purpose of this paper is to present some results which suggest that the Singular Cardinals Hypothesis follows from the Proper Forcing Axiom. What will be proved is that a form of simultaneous reflection follows from the Set Mapping Reflection Principle, a consequence of PFA. While the results fall short of showing that MRP implies SCH, it will be shown that MRP implies that if SCH fails first at κ then every stationary subset of reflects. It will also (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  57
    Indiscernible sequences for extenders, and the singular cardinal hypothesis.Moti Gitik & William J. Mitchell - 1996 - Annals of Pure and Applied Logic 82 (3):273-316.
    We prove several results giving lower bounds for the large cardinal strength of a failure of the singular cardinal hypothesis. The main result is the following theorem: Theorem. Suppose κ is a singular strong limit cardinal and 2κ λ where λ is not the successor of a cardinal of cofinality at most κ. If cf > ω then it follows that o λ, and if cf = ωthen either o λ or {α: K (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  5.  41
    The Proper Forcing Axiom and the Singular Cardinal Hypothesis.Matteo Viale - 2006 - Journal of Symbolic Logic 71 (2):473 - 479.
    We show that the Proper Forcing Axiom implies the Singular Cardinal Hypothesis. The proof uses the reflection principle MRP introduced by Moore in [11].
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  6. Saturated ideals and the singular cardinal hypothesis.Yo Matsubara - 1992 - Journal of Symbolic Logic 57 (3):970-974.
  7.  44
    The tree property and the failure of the Singular Cardinal Hypothesis at ℵω2.Dima Sinapova - 2012 - Journal of Symbolic Logic 77 (3):934-946.
    We show that given ù many supercompact cardinals, there is a generic extension in which the tree property holds at ℵ ω²+1 and the SCH fails at ℵ ω².
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  8.  33
    The strenght of the failure of the singular cardinal hypothesis.Moti Gitik - 1991 - Annals of Pure and Applied Logic 51 (3):215-240.
    We show that o = k++ is necessary for ¬SCH. Together with previous results it provides the exact strenght of ¬SCH.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  9. ABRAMSKY, S., Domain theory in logical form (l-2) l-77 FARMER, WM, A unification-theoretic method for investigat-ing the k-provability problem (3) 173-214 GITIK, M., The strength of the failure of the Singular Cardinal Hypothesis (3) 215-240. [REVIEW]D. Miller - 1991 - Annals of Pure and Applied Logic 51:301.
     
    Export citation  
     
    Bookmark  
  10.  32
    Reviewed Work: Recent papers on the tree property. Aronszajn trees and failure of the Singular Cardinal Hypothesis. Journal of Mathematical Logic, vol. 9, no. 1 , The tree property at ℵ ω+1. Journal of Symbolic Logic, vol. 77, no. 1 , The tree property and the failure of SCH at uncountable confinality. Archive for Mathematical Logic, vol. 51, no. 5-6 , The tree property and the failure of the Singular Cardinal Hypothesis at [image]. Journal of Symbolic Logic, vol. 77, no. 3 , Aronszajn trees and the successors of a singular cardinal. Archive for Mathematical Logic, vol. 52, no. 5-6 , The tree property up to ℵ ω+1. Journal of Symbolic Logic. vol. 79, no. 2 by Itay Neeman; Dima Sinapova; Spencer Unger. [REVIEW]Review by: James Cummings - 2015 - Bulletin of Symbolic Logic 21 (2):188-192.
  11.  49
    Gitik Moti. The negation of the singular cardinal hypothesis from O = K ++. Annals of pure and applied logic, vol. 43 , pp. 209–234. [REVIEW]W. J. Mitchell - 1991 - Journal of Symbolic Logic 56 (1):344-344.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  12.  63
    Powers of Singular Cardinals and a Strong Form of The Negation of The Generalized Continuum Hypothesis.Stephen H. Hechler - 1973 - Mathematical Logic Quarterly 19 (3-6):83-84.
  13.  40
    Some Problems in Singular Cardinals Combinatorics.Matthew Foreman - 2005 - Notre Dame Journal of Formal Logic 46 (3):309-322.
    This paper attempts to present and organize several problems in the theory of Singular Cardinals. The most famous problems in the area (bounds for the ℶ-function at singular cardinals) are well known to all mathematicians with even a rudimentary interest in set theory. However, it is less well known that the combinatorics of singular cardinals is a thriving area with results and problems that do not depend on a solution of the Singular Cardinals Hypothesis. We (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  14.  51
    Gitik Moti. The strength of the failure of the singular cardinal hypothesis. Annals of pure and applied logic, vol. 51 , pp. 215–240. [REVIEW]James Cummings - 1995 - Journal of Symbolic Logic 60 (1):340-340.
  15.  30
    Itay Neeman. Aronszajn trees and failure of the Singular Cardinal Hypothesis. Journal of Mathematical Logic, vol. 9, no. 1 , pp. 139–157. - Dima Sinapova. The tree property at אּω+1. Journal of Symbolic Logic, vol. 77, no. 1 , pp. 279–290. - Dima Sinapova. The tree property and the failure of SCH at uncountable cofinality. Archive for Mathematical Logic, vol. 51, no. 5-6 , pp. 553–562. - Dima Sinapova. The tree property and the failure of the Singular Cardinal Hypothesis at אּω2. Journal of Symbolic Logic, vol. 77, no. 3 , pp. 934–946. - Spencer Unger. Aronszajn trees and the successors of a singular cardinal. Archive for Mathematical Logic, vol. 52, no. 5-6 , pp. 483–496. - Itay Neeman. The tree property up to אּω+1. Journal of Symbolic Logic. vol. 79, no. 2 , pp. 429–459. [REVIEW]James Cummings - 2015 - Bulletin of Symbolic Logic 21 (2):188-192.
  16.  52
    Moti Gitik and Menachem Magidor. Extender based forcings. The Journal of Symbolic Logic, vol. 59 , pp. 445–460. - Moti Gitik and William J. Mitchell. Indiscernible sequences for extenders, and the singular cardinal hypothesis. Annals of Pure and Applied Logic, vol. 82 , pp. 273–316. - Moti Gitik. Blowing up the power of a singular cardinal. Annals of Pure and Applied Logic, vol. 80 , pp. 17–33. - Moti Gitik and Carmi Merimovich. Possible values for and. Annals of Pure and Applied Logic, vol. 90 , pp. 193–241. - Moti Gitik. Blowing up power of a singular cardinal—wider gaps. Annals of Pure and Applied Logic, vol. 116 , pp. 1–38. [REVIEW]Akihiro Kanamori - 2003 - Bulletin of Symbolic Logic 9 (2):237-241.
  17.  32
    Moti Gitik and Menachem Magidor. The singular cardinal hypothesis revisited. Set theory of the continuum, edited by H. Judah, W. Just, and H. Woodin, Mathematical Sciences Research Institute publications, vol. 26, Springer-Verlag, New York etc. 1992, pp. 243–279. [REVIEW]James Cummings - 1995 - Journal of Symbolic Logic 60 (1):339-340.
  18.  43
    Forcing axioms, supercompact cardinals, singular cardinal combinatorics.Matteo Viale - 2008 - Bulletin of Symbolic Logic 14 (1):99-113.
    The purpose of this communication is to present some recent advances on the consequences that forcing axioms and large cardinals have on the combinatorics of singular cardinals. I will introduce a few examples of problems in singular cardinal combinatorics which can be fruitfully attacked using ideas and techniques coming from the theory of forcing axioms and then translate the results so obtained in suitable large cardinals properties.The first example I will treat is the proof that the proper (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  19.  50
    Aronszajn trees and the successors of a singular cardinal.Spencer Unger - 2013 - Archive for Mathematical Logic 52 (5-6):483-496.
    From large cardinals we obtain the consistency of the existence of a singular cardinal κ of cofinality ω at which the Singular Cardinals Hypothesis fails, there is a bad scale at κ and κ ++ has the tree property. In particular this model has no special κ +-trees.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  20.  72
    The tree property and the failure of SCH at uncountable cofinality.Dima Sinapova - 2012 - Archive for Mathematical Logic 51 (5-6):553-562.
    Given a regular cardinal λ and λ many supercompact cardinals, we describe a type of forcing such that in the generic extension there is a cardinal κ with cofinality λ, the Singular Cardinal Hypothesis at κ fails, and the tree property holds at κ+.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  21.  63
    Sigma-Prikry forcing II: Iteration Scheme.Alejandro Poveda, Assaf Rinot & Dima Sinapova - 2022 - Journal of Mathematical Logic 22 (3):2150019.
    In Part I of this series [A. Poveda, A. Rinot and D. Sinapova, Sigma-Prikry forcing I: The axioms, Canad. J. Math. 73(5) (2021) 1205–1238], we introduced a class of notions of forcing which we call [Formula: see text]-Prikry, and showed that many of the known Prikry-type notions of forcing that center around singular cardinals of countable cofinality are [Formula: see text]-Prikry. We showed that given a [Formula: see text]-Prikry poset [Formula: see text] and a [Formula: see text]-name for a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  70
    The consistency strength of choiceless failures of SCH.Arthur W. Apter & Peter Koepke - 2010 - Journal of Symbolic Logic 75 (3):1066-1080.
    We determine exact consistency strengths for various failures of the Singular Cardinals Hypothesis (SCH) in the setting of the Zermelo-Fraenkel axiom system ZF without the Axiom of Choice (AC). By the new notion of parallel Prikry forcing that we introduce, we obtain surjective failures of SCH using only one measurable cardinal, including a surjective failure of Shelah's pcf theorem about the size of the power set of $\aleph _{\omega}$ . Using symmetric collapses to $\aleph _{\omega}$ , $\aleph (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  26
    Contributions to the Theory of Large Cardinals through the Method of Forcing.Alejandro Poveda - 2021 - Bulletin of Symbolic Logic 27 (2):221-222.
    The dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle. In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics.We commence Part I by investigating the Identity Crisis (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  70
    Proper forcing, cardinal arithmetic, and uncountable linear orders.Justin Tatch Moore - 2005 - Bulletin of Symbolic Logic 11 (1):51-60.
    In this paper I will communicate some new consequences of the Proper Forcing Axiom. First, the Bounded Proper Forcing Axiom implies that there is a well ordering of R which is Σ 1 -definable in (H(ω 2 ), ∈). Second, the Proper Forcing Axiom implies that the class of uncountable linear orders has a five element basis. The elements are X, ω 1 , ω 1 * , C, C * where X is any suborder of the reals of size (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark  
  25.  68
    Generic embeddings associated to an indestructibly weakly compact cardinal.Gunter Fuchs - 2010 - Annals of Pure and Applied Logic 162 (1):89-105.
    I use generic embeddings induced by generic normal measures on that can be forced to exist if κ is an indestructibly weakly compact cardinal. These embeddings can be applied in order to obtain the forcing axioms in forcing extensions. This has consequences in : The Singular Cardinal Hypothesis holds above κ, and κ has a useful Jónsson-like property. This in turn implies that the countable tower works much like it does when κ is a Woodin limit (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Nonexistence of universal orders in many cardinals.Menachem Kojman & Saharon Shelah - 1992 - Journal of Symbolic Logic 57 (3):875-891.
    Our theme is that not every interesting question in set theory is independent of ZFC. We give an example of a first order theory T with countable D(T) which cannot have a universal model at ℵ1 without CH; we prove in ZFC a covering theorem from the hypothesis of the existence of a universal model for some theory; and we prove--again in ZFC--that for a large class of cardinals there is no universal linear order (e.g. in every regular $\aleph_1 (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  27. The short extenders gap three forcing using a morass.Carmi Merimovich - 2011 - Archive for Mathematical Logic 50 (1-2):115-135.
    We show how to construct Gitik’s short extenders gap-3 forcing using a morass, and that the forcing notion is of Prikry type.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  36
    Guessing models and generalized Laver diamond.Matteo Viale - 2012 - Annals of Pure and Applied Logic 163 (11):1660-1678.
    We analyze the notion of guessing model, a way to assign combinatorial properties to arbitrary regular cardinals. Guessing models can be used, in combination with inaccessibility, to characterize various large cardinal axioms, ranging from supercompactness to rank-to-rank embeddings. The majority of these large cardinal properties can be defined in terms of suitable elementary embeddings j:Vγ→Vλ. One key observation is that such embeddings are uniquely determined by the image structures j[Vγ]≺Vλ. These structures will be the prototypes guessing models. We (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  29.  35
    On a question of Pereira.Moti Gitik - 2008 - Archive for Mathematical Logic 47 (1):53-64.
    Answering a question of Pereira we show that it is possible to have a model violating the Singular Cardinal Hypothesis without a tree-like continuous scale.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30. On löwenheim–skolem–tarski numbers for extensions of first order logic.Menachem Magidor & Jouko Väänänen - 2011 - Journal of Mathematical Logic 11 (1):87-113.
    We show that, assuming the consistency of a supercompact cardinal, the first inaccessible cardinal can satisfy a strong form of a Löwenheim–Skolem–Tarski theorem for the equicardinality logic L, a logic introduced in [5] strictly between first order logic and second order logic. On the other hand we show that in the light of present day inner model technology, nothing short of a supercompact cardinal suffices for this result. In particular, we show that the Löwenheim–Skolem–Tarski theorem for the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  31.  28
    Stationary Reflection and the Failure of the Sch.Omer Ben-Neria, Yair Hayut & Spencer Unger - 2024 - Journal of Symbolic Logic 89 (1):1-26.
    In this paper we prove that from large cardinals it is consistent that there is a singular strong limit cardinal $\nu $ such that the singular cardinal hypothesis fails at $\nu $ and every collection of fewer than $\operatorname {\mathrm {cf}}(\nu )$ stationary subsets of $\nu ^{+}$ reflects simultaneously. For $\operatorname {\mathrm {cf}}(\nu )> \omega $, this situation was not previously known to be consistent. Using different methods, we reduce the upper bound on the consistency (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  27
    Diagonal supercompact Radin forcing.Omer Ben-Neria, Chris Lambie-Hanson & Spencer Unger - 2020 - Annals of Pure and Applied Logic 171 (10):102828.
    Motivated by the goal of constructing a model in which there are no κ-Aronszajn trees for any regular $k>\aleph_1$, we produce a model with many singular cardinals where both the singular cardinals hypothesis and weak square fail.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  38
    $$I_0$$ and combinatorics at $$\lambda ^+$$.Nam Trang & Xianghui Shi - 2017 - Archive for Mathematical Logic 56 (1):131-154.
    We investigate the compatibility of $$I_0$$ with various combinatorial principles at $$\lambda ^+$$, which include the existence of $$\lambda ^+$$ -Aronszajn trees, square principles at $$\lambda $$, the existence of good scales at $$\lambda $$, stationary reflections for subsets of $$\lambda ^{+}$$, diamond principles at $$\lambda $$ and the singular cardinal hypothesis at $$\lambda $$. We also discuss whether these principles can hold in $$L(V_{\lambda +1})$$.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  34.  58
    Analytic Equivalence Relations and the Forcing Method.Jindřich Zapletal - 2013 - Bulletin of Symbolic Logic 19 (4):473-490.
    I describe several ways in which forcing arguments can be used to yield clean and conceptual proofs of nonreducibility, ergodicity and other results in the theory of analytic equivalence relations. In particular, I present simple Borel equivalence relationsE, Fsuch that a natural proof of nonreducibility ofEtoFuses the independence of the Singular Cardinal Hypothesis at ℵω.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  32
    Toward a stability theory of tame abstract elementary classes.Sebastien Vasey - 2018 - Journal of Mathematical Logic 18 (2):1850009.
    We initiate a systematic investigation of the abstract elementary classes that have amalgamation, satisfy tameness, and are stable in some cardinal. Assuming the singular cardinal hypothesis, we prove a full characterization of the stability cardinals, and connect the stability spectrum with the behavior of saturated models.We deduce that if a class is stable on a tail of cardinals, then it has no long splitting chains. This indicates that there is a clear notion of superstability in this (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  36. The short extenders gap two forcing is of Prikry type.Carmi Merimovich - 2009 - Archive for Mathematical Logic 48 (8):737-747.
    We show that Gitik’s short extender gap-2 forcing is of Prikry type.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  29
    Combinatorics at ℵ ω.Dima Sinapova & Spencer Unger - 2014 - Annals of Pure and Applied Logic 165 (4):996-1007.
    We construct a model in which the singular cardinal hypothesis fails at ℵωℵω. We use characterizations of genericity to show the existence of a projection between different Prikry type forcings.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  38.  27
    Simple proofs of $${\mathsf{SCH}}$$ SCH from reflection principles without using better scales.Hiroshi Sakai - 2015 - Archive for Mathematical Logic 54 (5-6):639-647.
    We give simple proofs of the Singular Cardinal Hypothesis from the Weak Reflection Principle and the Fodor-type Reflection Principle which do not use better scales.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  24
    On gaps under GCH type assumptions.Moti Gitik - 2003 - Annals of Pure and Applied Logic 119 (1-3):1-18.
    We prove equiconsistency results concerning gaps between a singular strong limit cardinal κ of cofinality 0 and its power under assumptions that 2κ=κ+δ+1 for δ<κ and some weak form of the Singular Cardinal Hypothesis below κ. Together with the previous results this basically completes the study of consistency strength of the various gaps between such κ and its power under GCH type assumptions below.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  40. Supercompact extender based Prikry forcing.Carmi Merimovich - 2011 - Archive for Mathematical Logic 50 (5-6):591-602.
    The extender based Prikry forcing notion is being generalized to super compact extenders.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41.  11
    Meeting numbers and pseudopowers.Pierre Matet - 2021 - Mathematical Logic Quarterly 67 (1):59-76.
    We study the role of meeting numbers in pcf theory. In particular, Shelah's Strong Hypothesis is shown to be equivalent to the assertion that for any singular cardinal σ of cofinality ω, there is a size collection Q of countable subsets of σ with the property that for any infinite subset a of σ, there is a member of Q meeting a in an infinite set.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Descriptive Properties of I2-Embeddings.Vincenzo Dimonte, Martina Iannella & Philipp Lücke - forthcoming - Journal of Symbolic Logic:1-26.
    We contribute to the study of generalizations of the Perfect Set Property and the Baire Property to subsets of spaces of higher cardinalities, like the power set ${\mathcal {P}}({\lambda })$ of a singular cardinal $\lambda $ of countable cofinality or products $\prod _{i<\omega }\lambda _i$ for a strictly increasing sequence $\langle {\lambda _i}~\vert ~{i<\omega }\rangle $ of cardinals. We consider the question under which large cardinal hypothesis classes of definable subsets of these spaces possess such regularity (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  60
    Antichains in partially ordered sets of singular cofinality.Assaf Rinot - 2007 - Archive for Mathematical Logic 46 (5-6):457-464.
    In their paper from 1981, Milner and Sauer conjectured that for any poset $\langle P,\le\rangle$ , if $cf(P,\le)=\lambda>cf(\lambda)=\kappa$ , then P must contain an antichain of size κ. We prove that for λ > cf(λ) = κ, if there exists a cardinal μ < λ such that cov(λ, μ, κ, 2) = λ, then any poset of cofinality λ contains λ κ antichains of size κ. The hypothesis of our theorem is very weak and is a consequence of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  44.  66
    (1 other version)Extender based forcings.Moti Gitik & Menachem Magidor - 1994 - Journal of Symbolic Logic 59 (2):445-460.
    The paper is a continuation of [The SCH revisited]. In § 1 we define a forcing with countably many nice systems. It is used, for example, to construct a model "GCH below κ, c f κ = ℵ0, and $2^\kappa > \kappa^{+\omega}$" from 0(κ) = κ+ω. In § 2 we define a triangle iteration and use it to construct a model satisfying "{μ ≤ λ∣ c f μ = ℵ0 and $pp(\mu) > \lambda\}$ is countable for some λ". The question (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  45.  22
    Nowhere precipitousness of the non-stationary ideal over.Yo Matsubara & Saharon Shelah - 2002 - Journal of Mathematical Logic 2 (01):81-89.
    We prove that if λ is a strong limit singular cardinal and κ a regular uncountable cardinal < λ, then NSκλ, the non-stationary ideal over [Formula: see text], is nowhere precipitous. We also show that under the same hypothesis every stationary subset of [Formula: see text] can be partitioned into λκ disjoint stationary sets.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  46. Singular cardinals and the pcf theory.Thomas Jech - 1995 - Bulletin of Symbolic Logic 1 (4):408-424.
    §1. Introduction. Among the most remarkable discoveries in set theory in the last quarter century is the rich structure of the arithmetic of singular cardinals, and its deep relationship to large cardinals. The problem of finding a complete set of rules describing the behavior of the continuum function 2ℵα for singular ℵα's, known as the Singular Cardinals Problem, has been attacked by many different techniques, involving forcing, large cardinals, inner models, and various combinatorial methods. The work on (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  47.  31
    Consecutive Singular Cardinals and the Continuum Function.Arthur W. Apter & Brent Cody - 2013 - Notre Dame Journal of Formal Logic 54 (2):125-136.
    We show that from a supercompact cardinal $\kappa$, there is a forcing extension $V[G]$ that has a symmetric inner model $N$ in which $\mathrm {ZF}+\lnot\mathrm {AC}$ holds, $\kappa$ and $\kappa^{+}$ are both singular, and the continuum function at $\kappa$ can be precisely controlled, in the sense that the final model contains a sequence of distinct subsets of $\kappa$ of length equal to any predetermined ordinal. We also show that the above situation can be collapsed to obtain a model (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  72
    (1 other version)Successors of singular cardinals and coloring theorems I.Todd Eisworth & Saharon Shelah - 2005 - Archive for Mathematical Logic 44 (5):597-618.
    Abstract.We investigate the existence of strong colorings on successors of singular cardinals. This work continues Section 2 of [1], but now our emphasis is on finding colorings of pairs of ordinals, rather than colorings of finite sets of ordinals.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  49.  34
    Notes on Singular Cardinal Combinatorics.James Cummings - 2005 - Notre Dame Journal of Formal Logic 46 (3):251-282.
    We present a survey of combinatorial set theory relevant to the study of singular cardinals and their successors. The topics covered include diamonds, squares, club guessing, forcing axioms, and PCF theory.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  50.  11
    The Strong and Super Tree Properties at Successors of Singular Cardinals.William Adkisson - 2024 - Journal of Symbolic Logic 89 (3):1251-1283.
    The strong tree property and ITP (also called the super tree property) are generalizations of the tree property that characterize strong compactness and supercompactness up to inaccessibility. That is, an inaccessible cardinal $\kappa $ is strongly compact if and only if the strong tree property holds at $\kappa $, and supercompact if and only if ITP holds at $\kappa $. We present several results motivated by the problem of obtaining the strong tree property and ITP at many successive cardinals (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 973