Results for 'boolean function'

965 found
Order:
  1.  22
    Definability of Boolean Functions in Kripke Semantics.Naosuke Matsuda - 2023 - Notre Dame Journal of Formal Logic 64 (3):363-376.
    A set F of Boolean functions is said to be functionally complete if every Boolean function is definable by combining functions in F. Post clarified when a set of Boolean functions is functionally complete (with respect to classical semantics). In this paper, by extending Post’s theorem, we clarify when a set of Boolean functions is functionally complete with respect to Kripke semantics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  9
    Reducible Boolean Functions.J. C. C. Mckinsey - 1936 - Journal of Symbolic Logic 1 (2):69-69.
  3.  42
    Enumerating types of Boolean functions.Alasdair Urquhart - 2009 - Bulletin of Symbolic Logic 15 (3):273-299.
    The problem of enumerating the types of Boolean functions under the group of variable permutations and complementations was first stated by Jevons in the 1870s. but not solved in a satisfactory way until the work of Pólya in 1940. This paper explains the details of Pólya's solution, and also the history of the problem from the 1870s to the 1970s.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  4.  30
    On Partial Classes Containig All Monotone and Zero-Preserving Total Boolean Functions.Birger Strauch - 1997 - Mathematical Logic Quarterly 43 (4):510-524.
    We describe sets of partial Boolean functions being closed under the operations of superposition. For any class A of total functions we define the set ????(A) consisting of all partial classes which contain precisely the functions of A as total functions. The cardinalities of such sets ????(A) can be finite or infinite. We state some general results on ????(A). In particular, we describe all 30 closed sets of partial Boolean functions which contain all monotone and zero-preserving total (...) functions. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  13
    On propositional, truth and Boolean functions.Tudor Ristea - 1968 - Notre Dame Journal of Formal Logic 9 (2):160-166.
  6.  28
    McKinsey J. C. C.. Boolean functions and points. Duke mathematical journal, vol. 2 , pp. 465–471.Paul Henle - 1937 - Journal of Symbolic Logic 2 (1):41-41.
  7.  18
    A Theorem on Parametric Boolean Functions.W. V. Quine & S. C. Kleene - 1958 - Journal of Symbolic Logic 23 (1):58-59.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  42
    Duthie William D.. Boolean functions of bounded variation. Duke mathematical journal, vol. 4 , pp. 600–606.J. C. C. McKinsey - 1938 - Journal of Symbolic Logic 3 (4):164-165.
  9.  43
    C. S. Lorens. Invertible Boolean functions. IEEE transactions on electronic computers, vol. EC–13 , pp. 529–541.Harold S. Stone - 1971 - Journal of Symbolic Logic 36 (2):347-348.
  10.  22
    J. C. C. McKinsey. Boolean functions and points. Duke mathematical journal, vol. 2 (1936), pp. 465–471.J. C. C. Mckinsey - 1937 - Journal of Symbolic Logic 2 (1):41-41.
  11. Clones of Boolean functions-a survey.I. G. Rosenberg - 1988 - South African Journal of Philosophy-Suid-Afrikaanse Tydskrif Vir Wysbegeerte 7 (2):90-99.
    No categories
     
    Export citation  
     
    Bookmark   1 citation  
  12.  43
    Stuermann Walter E.. Plotting Boolean functions. American mathematical monthly, vol. 67 , pp. 170–172.Stuermann Walter E.. The Boole table generalized. American mathematical monthly, vol. 68 , pp. 53–56. [REVIEW]W. Mays - 1962 - Journal of Symbolic Logic 27 (2):246-247.
  13.  6
    A Condition that a first Boolean Function Vanish wherever a Second does not.J. C. C. Mckinsey - 1938 - Journal of Symbolic Logic 3 (1):47-48.
  14.  55
    McCluskey E. J. Jr. Minimization of Boolean functions. The Bell System technical journal, vol. 35 , pp. 1417–1444.Robert McNaughton - 1958 - Journal of Symbolic Logic 23 (2):235-235.
  15.  11
    Errata: ``A double-iteration property of Boolean functions''.Carl Lyngholm & Wolfgang Yourgrau - 1961 - Notre Dame Journal of Formal Logic 2 (4):259-259.
  16.  12
    ‪A Tight Ω (Loglog n)-Bound on the Time for Parallel Ram’s to Compute Nondegenerated Boolean Functions‬.H. U. Simon - 2006 - In O. Stock & M. Schaerf (eds.), Lecture Notes In Computer Science. Springer Verlag.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  17.  33
    A 5n− o (n) Lower Bound on the Circuit Size over U 2 of a Linear Boolean Function.Alexander S. Kulikov, Olga Melanich & Ivan Mihajlin - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 432--439.
    Direct download  
     
    Export citation  
     
    Bookmark  
  18.  18
    On Detection of Group Invariance or Total Symmetry of a Boolean Function.A. K. Choudhury, M. S. Basu, C. L. Sheng & S. R. Das - 1971 - Journal of Symbolic Logic 36 (4):694-695.
  19.  13
    A double-iteration property of Boolean functions.Carl Lyngholm - 1960 - Notre Dame Journal of Formal Logic 1 (3):111-114.
  20.  14
    An Application of Linear Programming to the Minimization of Boolean Functions.A. Cobham, R. Fridshal & J. H. North - 1965 - Journal of Symbolic Logic 30 (2):247-247.
  21.  19
    McKinsey J. C. C.. Reducible Boolean functions. Bulletin of the American Mathematical Society, vol. 42 , pp. 263–267.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (2):69-69.
  22.  41
    Mullin Albert A. and Kellner Wayne G.. A residue test for Boolean functions. Transactions of the Illinois State Academy of Science, vol. 51 nos. 3 and 4, , pp. 14–19. [REVIEW]E. J. McCluskey - 1960 - Journal of Symbolic Logic 25 (2):185-185.
  23.  43
    Superatomic Boolean algebras constructed from strongly unbounded functions.Juan Carlos Martínez & Lajos Soukup - 2011 - Mathematical Logic Quarterly 57 (5):456-469.
    Using Koszmider's strongly unbounded functions, we show the following consistency result: Suppose that κ, λ are infinite cardinals such that κ++ + ≤ λ, κ<κ = κ and 2κ = κ+, and η is an ordinal with κ+ ≤ η < κ++ and cf = κ+. Then, in some cardinal-preserving generic extension there is a superatomic Boolean algebra equation image such that equation image, equation image for every α < η and equation image. Especially, equation image and equation image (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  17
    McKinsey J. C. C.. A condition that a first Boolean function vanish wherever a second does not. Bulletin of the American Mathematical Society, vol. 43 , pp. 694–696. [REVIEW]W. V. Quine - 1938 - Journal of Symbolic Logic 3 (1):47-48.
  25.  24
    (1 other version)Cobham A., Fridshal R., and North J. H.. An application of linear programming to the minimization of Boolean functions. Switching circuit theory and logical design, Proceedings of the Second Annual Symposium, Detroit, Mich., October 17-20, 1961, and Papers from the First Annual Symposium, Chicago, Ill., October 9-14, 1960, American Institute of Electrical Engineers, New York 1961, pp. 3–9. [REVIEW]Thomas H. Mott - 1965 - Journal of Symbolic Logic 30 (2):247-247.
  26.  52
    Hirschhorn Edwin. Simplification of a class of Boolean functions. Journal of the Association for Computing Machinery, vol. 5 no. 1 , pp. 67–75. [REVIEW]E. J. Mccluskey - 1958 - Journal of Symbolic Logic 23 (2):236-237.
  27.  46
    Gazalé M. J. Ghazala. Irredundant disjunctive and conjunctive forms of a Boolean function. IBM journal of research and development, vol. 1 , pp. 171–176.Rado T.. Comments on the presence function of Gazalé. IBM journal of research and development, vol. 6 , pp. 268–269. [REVIEW]Thomas H. Mott - 1965 - Journal of Symbolic Logic 30 (1):106-109.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  28.  19
    (1 other version)Slepian David. On the number of symmetry types of Boolean functions of n variables. Canadian journal of mathematics, vol 5 , pp. 135–193. Reprinted in the Bell Telephone System technical publications, monograph 2154. [REVIEW]Raymond J. Nelson - 1955 - Journal of Symbolic Logic 20 (1):70-70.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  29.  46
    Choudhury A. K. and Basu M. S.. On detection of group invariance or total symmetry of a Boolean function. Indian journal of physics, vol. 36 , pp. 31–42; also Proceedings of the Indian Association for the Cultivation of Science, vol. 45 , pp. 31–42.Sheng C. L.. Detection of totally symmetric Boolean functions. IEEE transactions on electronic computers, vol. EC-14 , pp. 924–926.Choudhury A. K. and Das S. R.. Comment on “Detection of totally symmetric Boolean functions.” IEEE transactions on electronic computers, vol. EC-15 , p. 813.Sheno C. L.. Author's reply. IEEE transactions on electronic computers, vol. EC-15 , p. 813. [REVIEW]M. A. Harrison - 1971 - Journal of Symbolic Logic 36 (4):694-695.
  30.  33
    G. A. Šéstopal. O čislé prostyh bazisov bulévyh funkcij. Doklady Akadémii Nauk SSSR, vol. 140 , pp. 314–317. - G. A. Šestopal. On the number of simple bases of Boolean functions. English translation of the preceding by E. Mendelson. Soviet mathematics, vol. 2 no. 5 , pp. 1215–1219. - S. V. Áblonskij. O supérpoziciáh funkcij v Рκ . Problémy kibérnétiki, vol. 9 , pp. 337–340. - V. V. Martynúk. Isslédovanié nékotoryh klassov funkcij v mnogoznačnyh logikah . Problémy kibérnétiki, vol. 3, pp. 49–60. - É. Ú. Zaharov and S. V. Áblonskij. O nékotoryh svojstvah suščéstvénnyh funkcij iz Рκ . Problémy kibérnétiki, vol. 12 , pp. 247–252. [REVIEW]Arto Salomaa - 1966 - Journal of Symbolic Logic 31 (3):501-502.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  31.  19
    (1 other version)McCluskey E. J. Jr., Minimal sums for Boolean functions having many unspecified fundamental products. Switching circuit theory and logical design, Proceedings of the Second Annual Symposium, Detroit, Mich., October 17–20,1961, and papers from the First Annual Symposium, Chicago, III., October 9–14,1960, American Institute of Electrical Engineers, New York 1961, pp. 10–17; also Transactions of the American Institute of Electrical Engineers, vol. 81 part 1 , pp. 387–392. [REVIEW]Thomas H. Mott - 1967 - Journal of Symbolic Logic 32 (2):263-264.
  32.  46
    Abhyankar Shreeram. Absolute minimal expressions of Boolean functions. IRE transactions on electronic computers, vol. EC-8 , pp. 3–8. [REVIEW]E. J. McCluskey - 1959 - Journal of Symbolic Logic 24 (3):255-255.
  33.  34
    McCluskey E. J. Jr. Detection of group invariance or total symmetry of a Boolean function. The Bell System technical journal, vol. 35 , pp. 1445–1453. [REVIEW]Robert McNaughton - 1958 - Journal of Symbolic Logic 23 (2):236-236.
  34.  40
    (1 other version)R. H. Urbano and R. K. Mueller. A topological method for the determination of the minimal forms of a Boolean function. Transactions of the IRE Professional. Group on Electronic Computers, vol. EC-5 no. 3 , pp. 126–132. - David M. Brender. The logical procedures needed for finding the minimals of a Boolean function on a digital computer. Summaries of talks presented at the Summer Institute for Symbolic Logic, Cornell University, 1957, 2nd edn., Communications Research Division, Institute for Defense Analyses, Princeton, N.J., 1960, p. 210. [REVIEW]Thomas H. Mott - 1960 - Journal of Symbolic Logic 25 (4):368-370.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  35.  68
    Michael A. Harrison. The number of transitivity sets of Boolean functions. Journal of the Society for Industrial and Applied Mathematics, t. 11 , p. 806–828. - Michael A. Harrison. The number of equivalence classes of Boolean functions under groups containing negation. IEEE transactions on electronic computers, t. EC-12 , p. 559–561. - Michael A. Harrison. On the number of classes of switching networks. Journal of the Franklin Institute, t. 276 , p. 313–327. - Michael A. Harrison. The number of classes of invertible Boolean functions. Journal of the Association for Computing Machinery, t. 10 , p. 25–28. [REVIEW]J. Kuntzmann - 1970 - Journal of Symbolic Logic 35 (1):160-161.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  36.  28
    Quine W. V.. A theorem on parametric Boolean functions. U.S. Air Force Project RAND, RM–196, 27 07 1949, 4 pp.Quine W. V.. Commutative Boolean functions. U.S. Air Force Project RAND, RM–199, 10 08 1949, 5 pp.Quine W. V.. On functions of relations, with especial reference to social welfare. U.S. Air Force Project RAND, RM–218, 19 08 1949, 15 pp.Kleene S. C.. Representation of events in nerve nets and finite automata. U.S. Air Force Project RAND, RM–704, 15 12 1951, ii + 98 pp. [REVIEW]Alonzo Church - 1958 - Journal of Symbolic Logic 23 (1):58-59.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37.  22
    Tison Pierre. Generalization of consensus theory and application to the minimization of Boolean functions. IEEE transactions on electronic computers, vol. EC-16 , pp. 446–456. [REVIEW]James F. Gimpel - 1968 - Journal of Symbolic Logic 33 (3):468-468.
  38.  31
    (1 other version)R. H. Urbano and R. K. Mueller. A topological method for the determination of the minimal forms of a Boolean function. Transactions of the IRE Professional. Group on Electronic Computers, vol. EC-5 no. 3 , pp. 126–132. - David M. Brender. The logical procedures needed for finding the minimals of a Boolean function on a digital computer. Summaries of talks presented at the Summer Institute for Symbolic Logic, Cornell University, 1957, 2nd edn., Communications Research Division, Institute for Defense Analyses, Princeton, N.J., 1960, p. 210. [REVIEW]Thomas H. Mott - 1960 - Journal of Symbolic Logic 25 (4):370-373.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  39.  18
    On the Number of Simple Bases of Boolean Functions.On Superpositions of Functions in P k.Investigation of some Classes of Functions in Multivalued Logics.On some Properties of Essential Functions from P k. [REVIEW]Arto Salomaa, G. A. Sestopal, E. Mendelson, S. V. Ablonskij, V. V. Martynuk & E. U. Zaharov - 1966 - Journal of Symbolic Logic 31 (3):501.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  36
    Lyngholm Carl and Yourgrau Wolfgang. A double-iteration property of Boolean functions. Notre Dame journal of formal logic, vol. 1 , pp. 111–114. [REVIEW]William Wernick - 1960 - Journal of Symbolic Logic 25 (3):299-300.
  41.  35
    Meo. Angelo Raffaele On the minimal third order expression of a Boolean function. Proceedings of the Third Annual Symposium on Switching Circuit Theory and Logical Design, Chicago, October 7–12, 1962, American Institute of Electrical Engineers, New York 1962, pp. 5–24. [REVIEW]A. K. Choudhury - 1967 - Journal of Symbolic Logic 32 (4):540-540.
  42.  94
    Effectivity functions and efficient coalitions in Boolean games.Elise Bonzon, Marie-Christine Lagasquie-Schiex & Jérôme Lang - 2012 - Synthese 187 (S1):73-103.
    Boolean games are a logical setting for representing strategic games in a succinct way, taking advantage of the expressive power and conciseness of propositional logic. A Boolean game consists of a set of players, each of which controls a set of propositional variables and has a specific goal expressed by a propositional formula. We show here that Boolean games are a very simple setting, yet sophisticated enough, for analysing the formation of coalitions. Due to the fact that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  25
    Zakrevskii A. D.. A visual-matrix method for minimizing Boolean functions. English translation of XXXVI 572. Automation and remote control, vol. 21 , pp. 255–258. [REVIEW]H. Enderton - 1971 - Journal of Symbolic Logic 36 (3):549-549.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44.  17
    Minimalization of Boolean polynomials, truth functions, and lattices.Mitchell O. Locks - 1978 - Notre Dame Journal of Formal Logic 19 (2):264-270.
  45.  50
    (1 other version)Outlines of a Boolean tensor algebra with applications to the lower functional calculus.Håkan Törnebohm - 1958 - Theoria 24 (1):39-47.
  46. Equational Boolean relation theory.Harvey Friedman - manuscript
    Equational Boolean Relation Theory concerns the Boolean equations between sets and their forward images under multivariate functions. We study a particular instance of equational BRT involving two multivariate functions on the natural numbers and three infinite sets of natural numbers. We prove this instance from certain large cardinal axioms going far beyond the usual axioms of mathematics as formalized by ZFC. We show that this particular instance cannot be proved in ZFC, even with the addition of slightly weaker (...)
     
    Export citation  
     
    Bookmark  
  47.  40
    Cardinal functions on ultra products of Boolean algebras.Douglas Peterson - 1997 - Journal of Symbolic Logic 62 (1):43-59.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  21
    Pankajam S.. On symmetric functions of n elements in a Boolean algebra. The journal of the Indian Mathêmatical Society, n.s. vol. 2 , pp. 198–210. [REVIEW]Albert A. Bennett - 1937 - Journal of Symbolic Logic 2 (4):173-173.
  49.  16
    Self-conjugate functions on Boolean algebras.Thomas A. Sudkamp - 1978 - Notre Dame Journal of Formal Logic 19 (3):504-512.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  50.  40
    Simple characterization of functionally complete one‐element sets of propositional connectives.Petar Maksimović & Predrag Janičić - 2006 - Mathematical Logic Quarterly 52 (5):498-504.
    A set of propositional connectives is said to be functionally complete if all propositional formulae can be expressed using only connectives from that set. In this paper we give sufficient and necessary conditions for a one-element set of propositional connectives to be functionally complete. These conditions provide a simple and elegant characterization of functionally complete one-element sets of propositional connectives.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 965