Results for 'lattices'

972 found
Order:
  1.  14
    Departamento de Fisica, Facultad de Ciencias Universidad de Oviedo E-33007, Oviedo, Spain.A. Realistic Interpretation of Lattice Gauge - 1995 - In M. Ferrero & Alwyn van der Merwe (eds.), Fundamental Problems in Quantum Physics. Springer. pp. 177.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  2. Supermodular Lattices.Iqbal Unnisa, W. B. Vasantha Kandasamy & Florentin Smarandache - 2012 - Columbus, OH, USA: Educational Publisher.
    In lattice theory the two well known equational class of lattices are the distributive lattices and the modular lattices. All distributive lattices are modular however a modular lattice in general is not distributive. In this book, new classes of lattices called supermodular lattices and semi-supermodular lattices are introduced and characterized.
     
    Export citation  
     
    Bookmark  
  3.  66
    Residuated Lattices: An Algebraic Glimpse at Substructural Logics.Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski & Hiroakira Ono - 2007 - Elsevier.
    This is also where we begin investigating lattices of logics and varieties, rather than particular examples.
    Direct download  
     
    Export citation  
     
    Bookmark   73 citations  
  4.  10
    Introduction to Lattices and Order.B. A. Davey & H. A. Priestley - 2002 - Cambridge University Press.
    This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis (...)
    Direct download  
     
    Export citation  
     
    Bookmark   109 citations  
  5.  35
    Congruence Lattices of Semilattices with Operators.Jennifer Hyndman, J. B. Nation & Joy Nishida - 2016 - Studia Logica 104 (2):305-316.
    The duality between congruence lattices of semilattices, and algebraic subsets of an algebraic lattice, is extended to include semilattices with operators. For a set G of operators on a semilattice S, we have \ \cong^{d} {{\rm S}_{p}}}\), where L is the ideal lattice of S, and H is a corresponding set of adjoint maps on L. This duality is used to find some representations of lattices as congruence lattices of semilattices with operators. It is also shown that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  80
    Lattices of Fixed Points of Fuzzy Galois Connections.Radim Bělohlávek - 2001 - Mathematical Logic Quarterly 47 (1):111-116.
    We give a characterization of the fixed points and of the lattices of fixed points of fuzzy Galois connections. It is shown that fixed points are naturally interpreted as concepts in the sense of traditional logic.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  7.  55
    BK-lattices. Algebraic Semantics for Belnapian Modal Logics.Sergei P. Odintsov & E. I. Latkin - 2012 - Studia Logica 100 (1-2):319-338.
    Earlier algebraic semantics for Belnapian modal logics were defined in terms of twist-structures over modal algebras. In this paper we introduce the class of BK -lattices, show that this class coincides with the abstract closure of the class of twist-structures, and it forms a variety. We prove that the lattice of subvarieties of the variety of BK -lattices is dually isomorphic to the lattice of extensions of Belnapian modal logic BK . Finally, we describe invariants determining a twist-structure (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  8.  51
    Lattices of Theories in Languages without Equality.J. B. Nation - 2013 - Notre Dame Journal of Formal Logic 54 (2):167-175.
    If $\mathbf{S}$ is a semilattice with operators, then there is an implicational theory $\mathscr{Q}$ such that the congruence lattice $\operatorname{Con}$ is isomorphic to the lattice of all implicational theories containing $\mathscr{Q}$.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  9.  28
    The lattice of normal modal logics (preliminary report).Wolfgang Rautenberg - 1977 - Bulletin of the Section of Logic 6 (4):193-199.
    Most material below is ranked around the splittings of lattices of normal modal logics. These splittings are generated by nite subdirect irreducible modal algebras. The actual computation of the splittings is often a rather delicate task. Rened model structures are very useful to this purpose, as well as they are in many other respects. E.g. the analysis of various lattices of extensions, like ES5, ES4:3 etc becomes rather simple, if rened structures are used. But this point will not (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  10.  32
    Lattice representations for computability theory.Peter A. Fejer - 1998 - Annals of Pure and Applied Logic 94 (1-3):53-74.
    Lattice representations are an important tool for computability theorists when they embed nondistributive lattices into degree-theoretic structures. In this expository paper, we present the basic definitions and results about lattice representations needed by computability theorists. We define lattice representations both from the lattice-theoretic and computability-theoretic points of view, give examples and show the connection between the two types of representations, discuss some of the known theorems on the existence of lattice representations that are of interest to computability theorists, and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  11.  45
    The Lattice of Subvarieties of the Variety Defined by Externally Compatible Identities of Abelian Groups of Exponent n.Katarzyna Gajewska-Kurdziel & Krystyna Mruczek-Nasieniewska - 2007 - Studia Logica 85 (3):361-379.
    The lattices of varieties were studied in many works (see [4], [5], [11], [24], [31]). In this paper we describe the lattice of all subvarieties of the variety $G_{Ex}^n$ defined by so called externally compatible identities of Abelian groups and the identity xⁿ ≈ yxⁿ. The notation in this paper is the same as in [2].
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  65
    The Lattice of Subvarieties of √′ quasi-MV Algebras.T. Kowalski, F. Paoli, R. Giuntini & A. Ledda - 2010 - Studia Logica 95 (1-2):37 - 61.
    In the present paper we continue the investigation of the lattice of subvarieties of the variety of √′ P quasi-MV algebras, already started in [6]. Beside some general results on the structure of such a lattice, the main contribution of this work is the solution of a long-standing open problem concerning these algebras: namely, we show that the variety generated by the standard disk algebra D r is not finitely based, and we provide an infinite equational basis for the same (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13. A Lattice of Chapters of Mathematics.Jan Mycielski, Pavel Pudlák, Alan S. Stern & American Mathematical Society - 1990 - American Mathematical Society.
     
    Export citation  
     
    Bookmark   7 citations  
  14.  61
    The lattice of distributive closure operators over an algebra.Josep M. Font & Ventura Verdú - 1993 - Studia Logica 52 (1):1 - 13.
    In our previous paper Algebraic Logic for Classical Conjunction and Disjunction we studied some relations between the fragmentL of classical logic having just conjunction and disjunction and the varietyD of distributive lattices, within the context of Algebraic Logic. The central tool in that study was a class of closure operators which we calleddistributive, and one of its main results was that for any algebraA of type (2,2) there is an isomorphism between the lattices of allD-congruences ofA and of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15.  44
    Lattice initial segments of the hyperdegrees.Richard A. Shore & Bjørn Kjos-Hanssen - 2010 - Journal of Symbolic Logic 75 (1):103-130.
    We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, $\scr{D}_{h}$ . In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable, locally finite lattice) is isomorphic to an initial segment of $\scr{D}_{h}$ . Corollaries include the decidability of the two quantifier theory of $\scr{D}_{h}$ and the undecidability of its three quantifier theory. The key tool in the proof is a (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  26
    Lattice BCK logics with Modus Ponens as unique rule.Joan Gispert & Antoni Torrens - 2014 - Mathematical Logic Quarterly 60 (3):230-238.
    Lattice BCK logic is the expansion of the well known Meredith implicational logic BCK expanded with lattice conjunction and disjunction. Although its natural axiomatization has three rules named modus ponens, ∨‐rule and ∧‐rule, we show that we can give an equivalent presentation with just modus ponens and ∧‐rule, however it is impossible to obtain an equivalent presentation with modus ponens as unique rule. In this paper we study and characterize all axiomatic extensions of lattice BCK logic with modus ponens as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  16
    The lattice of envy-free many-to-many matchings with contracts.Agustin G. Bonifacio, Nadia Guiñazú, Noelia Juarez, Pablo Neme & Jorge Oviedo - 2023 - Theory and Decision 96 (1):113-134.
    We study envy-free allocations in a many-to-many matching model with contracts in which agents on one side of the market (doctors) are endowed with substitutable choice functions and agents on the other side of the market (hospitals) are endowed with responsive preferences. Envy-freeness is a weakening of stability that allows blocking contracts involving a hospital with a vacant position and a doctor that does not envy any of the doctors that the hospital currently employs. We show that the set of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  18
    The lattice of all 4-valued implicative expansions of Belnap–Dunn logic containing Routley and Meyer’s basic logic Bd.Gemma Robles & José M. Méndez - 2024 - Logic Journal of the IGPL 32 (3):493-516.
    The well-known logic first degree entailment logic (FDE), introduced by Belnap and Dunn, is defined with |$\wedge $|⁠, |$\vee $| and |$\sim $| as the sole primitive connectives. The aim of this paper is to establish the lattice formed by the class of all 4-valued C-extending implicative expansions of FDE verifying the axioms and rules of Routley and Meyer’s basic logic B and its useful disjunctive extension B|$^{\textrm {d}}$|⁠. It is to be noted that Boolean negation (so, classical propositional logic) (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  20
    PC-lattices: A Class of Bounded BCK-algebras.Sadegh Khosravi Shoar, Rajab Ali Borzooei, R. Moradian & Atefe Radfar - 2018 - Bulletin of the Section of Logic 47 (1):33-44.
    In this paper, we define the notion of PC-lattice, as a generalization of finite positive implicative BCK-algebras with condition and bounded commutative BCK-algebras. We investiate some results for Pc-lattices being a new class of BCK-lattices. Specially, we prove that any Boolean lattice is a PC-lattice and we show that if X is a PC-lattice with condition S, then X is an involutory BCK-algebra if and only if X is a commutative BCK-algebra. Finally, we prove that any PC-lattice with (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  20.  30
    The lattice of Belnapian modal logics: Special extensions and counterparts.Sergei P. Odintsov & Stanislav O. Speranski - 2016 - Logic and Logical Philosophy 25 (1):3-33.
    Let K be the least normal modal logic and BK its Belnapian version, which enriches K with ‘strong negation’. We carry out a systematic study of the lattice of logics containing BK based on: • introducing the classes of so-called explosive, complete and classical Belnapian modal logics; • assigning to every normal modal logic three special conservative extensions in these classes; • associating with every Belnapian modal logic its explosive, complete and classical counterparts. We investigate the relationships between special extensions (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  21.  8
    Algebras, Lattices, and Varieties.Ralph McKenzie, McNulty N., F. George & Walter F. Taylor - 1987 - Wadsworth & Brooks.
    This book presents the foundations of a general theory of algebras. Often called “universal algebra”, this theory provides a common framework for all algebraic systems, including groups, rings, modules, fields, and lattices. Each chapter is replete with useful illustrations and exercises that solidify the reader's understanding. The book begins by developing the main concepts and working tools of algebras and lattices, and continues with examples of classical algebraic systems like groups, semigroups, monoids, and categories. The essence of the (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  22.  28
    New Operations on Orthomodular Lattices: "Disjunction" and "Conjunction" Induced by Mackey Decompositions.Jarosław Pykacz - 2000 - Notre Dame Journal of Formal Logic 41 (1):59-76.
    New conjunctionlike and disjunctionlike operations on orthomodular lattices are defined with the aid of formal Mackey decompositions of not necessarily compatible elements. Various properties of these operations are studied. It is shown that the new operations coincide with the lattice operations of join and meet on compatible elements of a lattice but they necessarily differ from the latter on all elements that are not compatible. Nevertheless, they define on an underlying set the partial order relation that coincides with the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  23. Continuous Lattices and Whiteheadian Theory of Space.Thomas Mormann - 1998 - Logic and Logical Philosophy 6:35 - 54.
    In this paper a solution of Whitehead’s problem is presented: Starting with a purely mereological system of regions a topological space is constructed such that the class of regions is isomorphic to the Boolean lattice of regular open sets of that space. This construction may be considered as a generalized completion in analogy to the well-known Dedekind completion of the rational numbers yielding the real numbers . The argument of the paper relies on the theories of continuous lattices and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  24.  21
    Automorphisms of the lattice of recursively enumerable sets.Peter Cholak - 1995 - Providence, RI: American Mathematical Society.
    Chapter 1: Introduction. S = <{We}c<w; C,U,n,0,w> is the substructure formed by restricting the lattice <^P(w); C , U, n,0,w> to the re subsets We of the ...
    Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  25. Non-standard lattices and o-minimal groups.Pantelis E. Eleftheriou - 2013 - Bulletin of Symbolic Logic 19 (1):56-76.
    We describe a recent program from the study of definable groups in certain o-minimal structures. A central notion of this program is that of a lattice. We propose a definition of a lattice in an arbitrary first-order structure. We then use it to describe, uniformly, various structure theorems for o-minimal groups, each time recovering a lattice that captures some significant invariant of the group at hand. The analysis first goes through a local level, where a pertinent notion of pregeometry and (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  26.  59
    Distributive lattices with a dual homomorphic operation.Alasdair Urquhart - 1979 - Studia Logica 38 (2):201 - 209.
    The lattices of the title generalize the concept of a De Morgan lattice. A representation in terms of ordered topological spaces is described. This topological duality is applied to describe homomorphisms, congruences, and subdirectly irreducible and free lattices in the category. In addition, certain equational subclasses are described in detail.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  27.  48
    Lattice theory, quadratic spaces, and quantum proposition systems.Robert Piziak - 1990 - Foundations of Physics 20 (6):651-665.
    A quadratic space is a generalization of a Hilbert space. The geometry of certain kinds of subspaces (“closed,” “splitting,” etc.) is approached from the purely lattice theoretic point of view. In particular, theorems of Mackey and Kaplansky are given purely lattice theoretic proofs. Under certain conditions, the lattice of “closed” elements is a quantum proposition system (i.e., a complete orthomodular atomistic lattice with the covering property).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  2
    Concept lattice formalisms of Hébert’s “semic analysis” and “analysis by classification”.Michael D. Fowler - 2024 - Semiotica 2024 (261):25-59.
    In this article we provide a mathematical frame to the generation of class taxonomies suggested by Hébert in his analysis of the poem > (‘A Sorry Business!’) by Gilles Vigneault (b. 1928) as well as a formalization of the structure of semic isotopies in his reading of The golden ship by Émile Nelligan (1879–1941). We also examine the characteristics of inter- and intra-semic molecules at work within Réne Magritte’s painting La clef des songes. Our mathematical frame is Ganter and Wille’s (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  33
    The lattice structure of the S-Lorenz core.Vincent Iehlé - 2015 - Theory and Decision 78 (1):141-151.
    For any TU game and any ranking of players, the set of all preimputations compatible with the ranking, equipped with the Lorenz order, is a bounded join semi-lattice. Furthermore, the set admits as sublattice the S-Lorenz core intersected with the region compatible with the ranking. This result uncovers a new property about the structure of the S-Lorenz core. As immediate corollaries, we obtain complementary results to the findings of Dutta and Ray :403–422, 1991), by showing that any S-constrained egalitarian allocation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  15
    Free lattices proof-theoretically.Tomasz Kowalski - 2020 - Australasian Journal of Logic 17 (2):110-122.
    A sequent system is used to give alternative proofs of two well known properties of free lattices: Whitman’s condition and semidistributivity. It demonstrates usefulness of such proof systems outside logic.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  31.  35
    The Lattice of Super-Belnap Logics.Adam Přenosil - 2023 - Review of Symbolic Logic 16 (1):114-163.
    We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  32.  55
    Semicomplemented Lattices and the Finite Model Property.I. L. Humberstone & A. J. Lock - 1986 - Mathematical Logic Quarterly 32 (25-30):431-437.
  33.  17
    Lattice-ordered reduced special groups.M. Dickmann, M. Marshall & F. Miraglia - 2005 - Annals of Pure and Applied Logic 132 (1):27-49.
    Special groups [M. Dickmann, F. Miraglia, Special Groups : Boolean-Theoretic Methods in the Theory of Quadratic Forms, Memoirs Amer. Math. Soc., vol. 689, Amer. Math. Soc., Providence, RI, 2000] are a first-order axiomatization of the theory of quadratic forms. In Section 2 we investigate reduced special groups which are a lattice under their natural representation partial order ; we show that this lattice property is preserved under most of the standard constructions on RSGs; in particular finite RSGs and RSGs of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  34.  10
    Substructure lattices and almost minimal end extensions of models of Peano arithmetic.James H. Schmerl - 2004 - Mathematical Logic Quarterly 50 (6):533-539.
    This paper concerns intermediate structure lattices Lt, where [MATHEMATICAL SCRIPT CAPITAL N] is an almost minimal elementary end extension of the model ℳ of Peano Arithmetic. For the purposes of this abstract only, let us say that ℳ attains L if L ≅ Lt for some almost minimal elementary end extension of [MATHEMATICAL SCRIPT CAPITAL N]. If T is a completion of PA and L is a finite lattice, then: If some model of T attains L, then every countable (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  37
    A lattice-valued set theory.Satoko Titani - 1999 - Archive for Mathematical Logic 38 (6):395-421.
    A lattice-valued set theory is formulated by introducing the logical implication $\to$ which represents the order relation on the lattice.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  36.  38
    Lattice Logic, Bilattice Logic and Paraconsistent Quantum Logic: a Unified Framework Based on Monosequent Systems.Norihiro Kamide - 2021 - Journal of Philosophical Logic 50 (4):781-811.
    Lattice logic, bilattice logic, and paraconsistent quantum logic are investigated based on monosequent systems. Paraconsistent quantum logic is an extension of lattice logic, and bilattice logic is an extension of paraconsistent quantum logic. Monosequent system is a sequent calculus based on the restricted sequent that contains exactly one formula in both the antecedent and succedent. It is known that a completeness theorem with respect to a lattice-valued semantics holds for a monosequent system for lattice logic. A completeness theorem with respect (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  74
    A lattice for the language of Aristotle's syllogistic and a lattice for the language of Vasiľév's syllogistic.Andrew Schumann - 2006 - Logic and Logical Philosophy 15 (1):17-37.
    In this paper an algebraic system of the new type is proposed (namely, a vectorial lattice). This algebraic system is a lattice for the language of Aristotle’s syllogistic and as well as a lattice for the language of Vasiľév’s syllogistic. A lattice for the language of Aristotle’s syllogistic is called a vectorial lattice on cap-semilattice and a lattice for the language of Vasiľév’s syllogistic is called a vectorial lattice on closure cap-semilattice. These constructions are introduced for the first time.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  38.  31
    Traces, traceability, and lattices of traces under the set theoretic inclusion.Gunther Mainhardt - 2013 - Archive for Mathematical Logic 52 (7-8):847-869.
    Let a trace be a computably enumerable set of natural numbers such that V[m]={n:〈n,m〉∈V}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V^{[m]} = \{n : \langle n, m\rangle \in V \}}$$\end{document} is finite for all m, where 〈.,.〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle^{.},^{.}\rangle}$$\end{document} denotes an appropriate pairing function. After looking at some basic properties of traces like that there is no uniform enumeration of all traces, we prove varied results on traceability and variants thereof, where (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  62
    Compatibility and accessibility: lattice representations for semantics of non-classical and modal logics.Wesley Holliday - 2022 - In David Fernández Duque & Alessandra Palmigiano (eds.), Advances in Modal Logic, Vol. 14. College Publications. pp. 507-529.
    In this paper, we study three representations of lattices by means of a set with a binary relation of compatibility in the tradition of Ploščica. The standard representations of complete ortholattices and complete perfect Heyting algebras drop out as special cases of the first representation, while the second covers arbitrary complete lattices, as well as complete lattices equipped with a negation we call a protocomplementation. The third topological representation is a variant of that of Craig, Haviar, and (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  40.  22
    Lattice embeddings and array noncomputable degrees.Stephen M. Walk - 2004 - Mathematical Logic Quarterly 50 (3):219.
    We focus on a particular class of computably enumerable degrees, the array noncomputable degrees defined by Downey, Jockusch, and Stob, to answer questions related to lattice embeddings and definability in the partial ordering of c. e. degrees under Turing reducibility. We demonstrate that the latticeM5 cannot be embedded into the c. e. degrees below every array noncomputable degree, or even below every nonlow array noncomputable degree. As Downey and Shore have proved that M5 can be embedded below every nonlow2 degree, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  81
    Residuated lattices arising from equivalence relations on Boolean and Brouwerian algebras.Thomas Vetterlein - 2008 - Mathematical Logic Quarterly 54 (4):350-367.
    Logics designed to deal with vague statements typically allow algebraic semantics such that propositions are interpreted by elements of residuated lattices. The structure of these algebras is in general still unknown, and in the cases that a detailed description is available, to understand its significance for logics can be difficult. So the question seems interesting under which circumstances residuated lattices arise from simpler algebras in some natural way. A possible construction is described in this paper.Namely, we consider pairs (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Neutrosophic Lattices.Vasantha Kandasamy & Florentin Smarandache - 2014 - Neutrosophic Sets and Systems 2:42-47.
    In this paper authors for the first time define a new notion called neutrosophic lattices. We define few properties related with them. Three types of neutrosophic lattices are defined and the special properties about these new class of lattices are discussed and developed. This paper is organised into three sections. First section introduces the concept of partially ordered neutrosophic set and neutrosophic lattices. Section two introduces different types of neutrosophic lattices and the final section studies (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  27
    Polymodal Lattices and Polymodal Logic.John L. Bell - 1996 - Mathematical Logic Quarterly 42 (1):219-233.
    A polymodal lattice is a distributive lattice carrying an n-place operator preserving top elements and certain finite meets. After exploring some of the basic properties of such structures, we investigate their freely generated instances and apply the results to the corresponding logical systems — polymodal logics — which constitute natural generalizations of the usual systems of modal logic familiar from the literature. We conclude by formulating an extension of Kripke semantics to classical polymodal logic and proving soundness and completeness theorems.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  44.  27
    Lattices in Locally Definable Subgroups of $langleR^{n},+rangle$.Pantelis E. Eleftheriou & Ya’Acov Peterzil - 2013 - Notre Dame Journal of Formal Logic 54 (3-4):449-461.
    Let $\mathcal{M}$ be an o-minimal expansion of a real closed field $R$. We define the notion of a lattice in a locally definable group and then prove that every connected, definably generated subgroup of $\langle R^{n},+\rangle$ contains a definable generic set and therefore admits a lattice.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  39
    Constructible lattices of c-degrees.C. P. Farrington - 1982 - Journal of Symbolic Logic 47 (4):739-754.
  46.  40
    Distributive Lattices with a Negation Operator.Sergio Arturo Celani - 1999 - Mathematical Logic Quarterly 45 (2):207-218.
    In this note we introduce and study algebras of type such that is a bounded distributive lattice and ⌝ is an operator that satisfies the condition ⌝ = a ⌝ b and ⌝ 0 = 1. We develop the topological duality between these algebras and Priestley spaces with a relation. In addition, we characterize the congruences and the subalgebras of such an algebra. As an application, we will determine the Priestley spaces of quasi-Stone algebras.
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  47.  23
    The Lattice Structures of Approximation Operators Based on L-Fuzzy Generalized Neighborhood Systems.Qiao-Ling Song, Hu Zhao, Juan-Juan Zhang, A. A. Ramadan, Hong-Ying Zhang & Gui-Xiu Chen - 2021 - Complexity 2021:1-10.
    Following the idea of L -fuzzy generalized neighborhood systems as introduced by Zhao et al., we will give the join-complete lattice structures of lower and upper approximation operators based on L -fuzzy generalized neighborhood systems. In particular, as special approximation operators based on L -fuzzy generalized neighborhood systems, we will give the complete lattice structures of lower and upper approximation operators based on L -fuzzy relations. Furthermore, if L satisfies the double negative law, then there exists an order isomorphic mapping (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  81
    (1 other version)The lattice of modal logics: An algebraic investigation.W. J. Blok - 1980 - Journal of Symbolic Logic 45 (2):221-236.
    Modal logics are studied in their algebraic disguise of varieties of so-called modal algebras. This enables us to apply strong results of a universal algebraic nature, notably those obtained by B. Jonsson. It is shown that the degree of incompleteness with respect to Kripke semantics of any modal logic containing the axiom □ p → p or containing an axiom of the form $\square^mp \leftrightarrow\square^{m + 1}p$ for some natural number m is 2 ℵ 0 . Furthermore, we show that (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  49.  34
    Lattices of Finitely Alternative Normal Tense Logics.Minghui Ma & Qian Chen - 2021 - Studia Logica 109 (5):1093-1118.
    A finitely alternative normal tense logic \ is a normal tense logic characterized by frames in which every point has at most n future alternatives and m past alternatives. The structure of the lattice \\) is described. There are \ logics in \\) without the finite model property, and only one pretabular logic in \\). There are \ logics in \\) which are not finitely axiomatizable. For \, there are \ logics in \\) without the FMP, and infinitely many pretabular (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  60
    ★-autonomous Lattices.Francesco Paoli - 2005 - Studia Logica 79 (2):283-304.
    -autonomous lattices are the algebraic exponentials and without additive constants. In this paper, we investigate the structure theory of this variety and some of its subvarieties, as well as its relationships with other classes of algebras.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 972