Results for 'm5C'

Order:
  1.  43
    N6‐methyladenine: the other methylated base of DNA.David Ratel, Jean-Luc Ravanat, François Berger & Didier Wion - 2006 - Bioessays 28 (3):309-315.
    Contrary to mammalian DNA, which is thought to contain only 5-methylcytosine (m5C), bacterial DNA contains two additional methylated bases, namely N6-methyladenine (m6A), and N4-methylcytosine (m4C). However, if the main function of m5C and m4C in bacteria is protection against restriction enzymes, the roles of m6A are multiple and include, for example, the regulation of virulence and the control of many bacterial DNA functions such as the replication, repair, expression and transposition of DNA. Interestingly, even if adenine methylation is usually considered (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  32
    Now you see it: Genome methylation makes a comeback in Drosophila.Dario Boffelli, Sachiko Takayama & David I. K. Martin - 2014 - Bioessays 36 (12):1138-1144.
    Drosophila melanogaster is often considered to lack genomic 5‐methylcytosine (m5C), an opinion reinforced by two whole genome bisulfite‐sequencing studies that failed to find m5C. New evidence, however, indicates that genomic methylation is indeed present in the fly, albeit in small quantities and in unusual patterns. At embryonic stage 5, m5C occurs in short strand‐specific regions that cover ∼1% of the genome, at tissue levels suggesting a distribution restricted to a subset of nuclei. Its function is not obvious, but methylation in (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  19
    Functional interplay within the epitranscriptome: Reality or fiction?Lina Worpenberg, Chiara Paolantoni & Jean-Yves Roignant - 2022 - Bioessays 44 (2):2100174.
    RNA modifications have recently emerged as an important regulatory layer of gene expression. The most prevalent and reversible modification on messenger RNA (mRNA), N6‐methyladenosine, regulates most steps of RNA metabolism and its dysregulation has been associated with numerous diseases. Other modifications such as 5‐methylcytosine and N1‐methyladenosine have also been detected on mRNA but their abundance is lower and still debated. Adenosine to inosine RNA editing is widespread on coding and non‐coding RNA and can alter mRNA decoding as well as protect (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation