Results for 'modal sequents'

973 found
Order:
  1.  66
    Comparing modal sequent systems.Greg Restall - unknown
    This is an exploratory and expository paper, comparing display logic formulations of normal modal logics with labelled sequent systems. We provide a translation from display sequents into labelled sequents. The comparison between different systems gives us a different way to understand the difference between display systems and other sequent calculi as a difference between local and global views of consequence. The mapping between display and labelled systems also gives us a way to understand labelled systems as properly (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  2.  63
    A modal sequent calculus for a fragment of arithmetic.G. Sambin & S. Valentini - 1980 - Studia Logica 39 (2-3):245-256.
    Global properties of canonical derivability predicates in Peano Arithmetic) are studied here by means of a suitable propositional modal logic GL. A whole book [1] has appeared on GL and we refer to it for more information and a bibliography on GL. Here we propose a sequent calculus for GL and, by exhibiting a good proof procedure, prove that such calculus admits the elimination of cuts. Most of standard results on GL are then easy consequences: completeness, decidability, finite model (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  3.  25
    Modal sequents for normal modal logics.Claudio Cerrato - 1993 - Mathematical Logic Quarterly 39 (1):231-240.
    We present sequent calculi for normal modal logics where modal and propositional behaviours are separated, and we prove a cut elimination theorem for the basic system K, so as completeness theorems both for K itself and for its most popular enrichments. MSC: 03B45, 03F05.
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  32
    Modal Sequent Calculi Labelled with Truth Values: Completeness, Duality and Analyticity.Paulo Mateus, Amílcar Sernadas, Cristina Sernadas & Luca Viganò - 2004 - Logic Journal of the IGPL 12 (3):227-274.
    Labelled sequent calculi are provided for a wide class of normal modal systems using truth values as labels. The rules for formula constructors are common to all modal systems. For each modal system, specific rules for truth values are provided that reflect the envisaged properties of the accessibility relation. Both local and global reasoning are supported. Strong completeness is proved for a natural two-sorted algebraic semantics. As a corollary, strong completeness is also obtained over general Kripke semantics. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  55
    Modal sequents and definability.Bruce M. Kapron - 1987 - Journal of Symbolic Logic 52 (3):756-762.
    The language of propositional modal logic is extended by the introduction of sequents. Validity of a modal sequent on a frame is defined, and modal sequent-axiomatic classes of frames are introduced. Through the use of modal algebras and general frames, a study of the properties of such classes is begun.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  15
    Modal Sequent Calculi Labelled with Truth Values: Cut Elimination.Paulo Mateus, João Rasga & Cristina Sernadas - 2005 - Logic Journal of the IGPL 13 (2):173-199.
    Cut elimination is shown, in a constructive way, to hold in sequent calculi labelled with truth values for a wide class of normal modal logics, supporting global and local reasoning and allowing a general frame semantics. The complexity of cut elimination is studied in terms of the increase of logical depth of the derivations. A hyperexponential worst case bound is established. The subformula property and a similar property for the label terms are shown to be satisfied by that class (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7. A perspective on modal sequent logic.Stephen Blamey & Lloyd Humberstone - 1991 - Publications of the Research Institute for Mathematical Sciences 27 (5):763-782.
  8.  16
    Modal sequents.Claudio Cerrato - 1996 - In Heinrich Wansing (ed.), Proof theory of modal logic. Boston: Kluwer Academic Publishers. pp. 141--166.
  9.  31
    Cut-free modal sequents for normal modal logics.Claudio Cerrato - 1993 - Notre Dame Journal of Formal Logic 34 (4):564-582.
  10.  21
    Modal Tree‐Sequents.Claudio Cerrato - 1996 - Mathematical Logic Quarterly 42 (1):197-210.
    We develop cut-free calculi of sequents for normal modal logics by using treesequents, which are trees of sequences of formulas. We introduce modal operators corresponding to the ways we move formulas along the branches of such trees, only considering fixed distance movements. Finally, we exhibit syntactic cut-elimination theorems for all the main normal modal logics.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  72
    Modular Sequent Calculi for Classical Modal Logics.David R. Gilbert & Paolo Maffezioli - 2015 - Studia Logica 103 (1):175-217.
    This paper develops sequent calculi for several classical modal logics. Utilizing a polymodal translation of the standard modal language, we are able to establish a base system for the minimal classical modal logic E from which we generate extensions in a modular manner. Our systems admit contraction and cut admissibility, and allow a systematic proof-search procedure of formal derivations.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  12.  46
    Labeled sequent calculi for modal logics and implicit contractions.Pierluigi Minari - 2013 - Archive for Mathematical Logic 52 (7-8):881-907.
    The paper settles an open question concerning Negri-style labeled sequent calculi for modal logics and also, indirectly, other proof systems which make (more or less) explicit use of semantic parameters in the syntax and are thus subsumed by labeled calculi, like Brünnler’s deep sequent calculi, Poggiolesi’s tree-hypersequent calculi and Fitting’s prefixed tableau systems. Specifically, the main result we prove (through a semantic argument) is that labeled calculi for the modal logics K and D remain complete w.r.t. valid (...) whose relational part encodes a tree-like structure, when the unique rule which contains an harmful implicit contraction—by which the condition that the premises be less complex than the conclusion is violated—is modified into a contraction-free one respecting the latter condition, thus making the proof-search space finite. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Generalised sequent calculus for propositional modal logics.Andrzej Indrzejczak - 1997 - Logica Trianguli 1:15-31.
    The paper contains an exposition of some non standard approach to gentzenization of modal logics. The first section is devoted to short discussion of desirable properties of Gentzen systems and the short review of various sequential systems for modal logics. Two non standard, cut-free sequent systems are then presented, both based on the idea of using special modal sequents, in addition to usual ones. First of them, GSC I is well suited for nonsymmetric modal logics (...)
     
    Export citation  
     
    Bookmark   12 citations  
  14.  93
    Sequent-systems for modal logic.Kosta Došen - 1985 - Journal of Symbolic Logic 50 (1):149-168.
    The purpose of this work is to present Gentzen-style formulations of S5 and S4 based on sequents of higher levels. Sequents of level 1 are like ordinary sequents, sequents of level 1 have collections of sequents of level 1 on the left and right of the turnstile, etc. Rules for modal constants involve sequents of level 2, whereas rules for customary logical constants of first-order logic with identity involve only sequents of level (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  15.  51
    2-Sequent calculus: a proof theory of modalities.Andrea Masini - 1992 - Annals of Pure and Applied Logic 58 (3):229-246.
    Masini, A., 2-Sequent calculus: a proof theory of modalities, Annals of Pure and Applied Logic 58 229–246. In this work we propose an extension of the Getzen sequent calculus in order to deal with modalities. We extend the notion of a sequent obtaining what we call a 2-sequent. For the obtained calculus we prove a cut elimination theorem.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  16.  49
    Sequent Calculi for Global Modal Consequence Relations.Minghui Ma & Jinsheng Chen - 2019 - Studia Logica 107 (4):613-637.
    The global consequence relation of a normal modal logic \ is formulated as a global sequent calculus which extends the local sequent theory of \ with global sequent rules. All global sequent calculi of normal modal logics admits global cut elimination. This property is utilized to show that decidability is preserved from the local to global sequent theories of any normal modal logic over \. The preservation of Craig interpolation property from local to global sequent theories of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  76
    Gentzen sequent calculi for some intuitionistic modal logics.Zhe Lin & Minghui Ma - 2019 - Logic Journal of the IGPL 27 (4):596-623.
    Intuitionistic modal logics are extensions of intuitionistic propositional logic with modal axioms. We treat with two modal languages ${\mathscr{L}}_\Diamond $ and $\mathscr{L}_{\Diamond,\Box }$ which extend the intuitionistic propositional language with $\Diamond $ and $\Diamond,\Box $, respectively. Gentzen sequent calculi are established for several intuitionistic modal logics. In particular, we introduce a Gentzen sequent calculus for the well-known intuitionistic modal logic $\textsf{MIPC}$. These sequent calculi admit cut elimination and subformula property. They are decidable.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  41
    Sequent Systems for Negative Modalities.Ori Lahav, João Marcos & Yoni Zohar - 2017 - Logica Universalis 11 (3):345-382.
    Non-classical negations may fail to be contradictory-forming operators in more than one way, and they often fail also to respect fundamental meta-logical properties such as the replacement property. Such drawbacks are witnessed by intricate semantics and proof systems, whose philosophical interpretations and computational properties are found wanting. In this paper we investigate congruential non-classical negations that live inside very natural systems of normal modal logics over complete distributive lattices; these logics are further enriched by adjustment connectives that may be (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  69
    Sequent calculi and decision procedures for weak modal systems.René Lavendhomme & Thierry Lucas - 2000 - Studia Logica 66 (1):121-145.
    We investigate sequent calculi for the weak modal (propositional) system reduced to the equivalence rule and extensions of it up to the full Kripke system containing monotonicity, conjunction and necessitation rules. The calculi have cut elimination and we concentrate on the inversion of rules to give in each case an effective procedure which for every sequent either furnishes a proof or a finite countermodel of it. Applications to the cardinality of countermodels, the inversion of rules and the derivability of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  20. Proofnets for S5: sequents and circuits for modal logic.Greg Restall - 2007 - In C. Dimitracopoulos, L. Newelski & D. Normann (eds.), Logic Colloquium 2005: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005. Cambridge: Cambridge University Press. pp. 151-172.
    In this paper I introduce a sequent system for the propositional modal logic S5. Derivations of valid sequents in the system are shown to correspond to proofs in a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear logic, or multiple-conclusion calculi for classical logic). -/- The sequent derivations and proofnets are both simple extensions of sequents and proofnets for classical propositional logic, in which the new machinery—to take account of the modal vocabulary—is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  21.  22
    Cut-free Sequent Calculus and Natural Deduction for the Tetravalent Modal Logic.Martín Figallo - 2021 - Studia Logica 109 (6):1347-1373.
    The tetravalent modal logic is one of the two logics defined by Font and Rius :481–518, 2000) in connection with Monteiro’s tetravalent modal algebras. These logics are expansions of the well-known Belnap–Dunn’s four-valued logic that combine a many-valued character with a modal character. In fact, $${\mathcal {TML}}$$ TML is the logic that preserves degrees of truth with respect to tetravalent modal algebras. As Font and Rius observed, the connection between the logic $${\mathcal {TML}}$$ TML and the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22. A cut-free sequent system for two-dimensional modal logic, and why it matters.Greg Restall - 2012 - Annals of Pure and Applied Logic 163 (11):1611-1623.
    The two-dimensional modal logic of Davies and Humberstone [3] is an important aid to our understanding the relationship between actuality, necessity and a priori knowability. I show how a cut-free hypersequent calculus for 2D modal logic not only captures the logic precisely, but may be used to address issues in the epistemology and metaphysics of our modal concepts. I will explain how the use of our concepts motivates the inference rules of the sequent calculus, and then show (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  23.  9
    Deep Sequent Systems for Modal Logic.Kai Brünnler - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 107-120.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  24. Nested Sequents for Intuitionistic Modal Logics via Structural Refinement.Tim Lyon - 2021 - In Anupam Das & Sara Negri (eds.), Automated Reasoning with Analytic Tableaux and Related Methods: TABLEAUX 2021. pp. 409-427.
    We employ a recently developed methodology -- called "structural refinement" -- to extract nested sequent systems for a sizable class of intuitionistic modal logics from their respective labelled sequent systems. This method can be seen as a means by which labelled sequent systems can be transformed into nested sequent systems through the introduction of propagation rules and the elimination of structural rules, followed by a notational translation. The nested systems we obtain incorporate propagation rules that are parameterized with formal (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  53
    Labelled Sequent Calculi for Lewis’ Non-normal Propositional Modal Logics.Matteo Tesi - 2020 - Studia Logica 109 (4):725-757.
    C. I. Lewis’ systems were the first axiomatisations of modal logics. However some of those systems are non-normal modal logics, since they do not admit a full rule of necessitation, but only a restricted version thereof. We provide G3-style labelled sequent calculi for Lewis’ non-normal propositional systems. The calculi enjoy good structural properties, namely admissibility of structural rules and admissibility of cut. Furthermore they allow for straightforward proofs of admissibility of the restricted versions of the necessitation rule. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  51
    Sequent Calculi and Interpolation for Non-Normal Modal and Deontic Logics.Eugenio Orlandelli - forthcoming - Logic and Logical Philosophy:1.
    G3-style sequent calculi for the logics in the cube of non-normal modal logics and for their deontic extensions are studied. For each calculus we prove that weakening and contraction are height-preserving admissible, and we give a syntactic proof of the admissibility of cut. This implies that the subformula property holds and that derivability can be decided by a terminating proof search whose complexity is in Pspace. These calculi are shown to be equivalent to the axiomatic ones and, therefore, they (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  34
    Sequent calculi for monotonic modal logics.Andrzej Indrzejczak - 2005 - Bulletin of the Section of Logic 34 (3):151-164.
  28.  20
    Kripke-Completeness and Sequent Calculus for Quasi-Boolean Modal Logic.Minghui Ma & Juntong Guo - forthcoming - Studia Logica:1-30.
    Quasi-Boolean modal algebras are quasi-Boolean algebras with a modal operator satisfying the interaction axiom. Sequential quasi-Boolean modal logics and the relational semantics are introduced. Kripke-completeness for some quasi-Boolean modal logics is shown by the canonical model method. We show that every descriptive persistent quasi-Boolean modal logic is canonical. The finite model property of some quasi-Boolean modal logics is proved. A cut-free Gentzen sequent calculus for the minimal quasi-Boolean logic is developed and we show that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  24
    Modal interpolation via nested sequents.Melvin Fitting & Roman Kuznets - 2015 - Annals of Pure and Applied Logic 166 (3):274-305.
  30.  45
    Proof-theoretic modal pa-completeness I: A system-sequent metric.Paolo Gentilini - 1999 - Studia Logica 63 (1):27-48.
    This paper is the first of a series of three articles that present the syntactic proof of the PA-completeness of the modal system G, by introducing suitable proof-theoretic objects, which also have an independent interest. We start from the syntactic PA-completeness of modal system GL-LIN, previously obtained in [7], [8], and so we assume to be working on modal sequents S which are GL-LIN-theorems. If S is not a G-theorem we define here a notion of syntactic (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  31.  69
    A cut-free simple sequent calculus for modal logic S5.Francesca Poggiolesi - 2008 - Review of Symbolic Logic 1 (1):3-15.
    In this paper, we present a simple sequent calculus for the modal propositional logic S5. We prove that this sequent calculus is theoremwise equivalent to the Hilbert-style system S5, that it is contraction-free and cut-free, and finally that it is decidable. All results are proved in a purely syntactic way.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  32. Higher-order sequent-system for intuitionistic modal logic.Kosta Dosen - 1985 - Bulletin of the Section of Logic 14 (4):140-142.
    In [2] we have presented sequent formulations of the modal logics S5 and S4 based on sequents of higher levels: sequents of level 1 are like ordinary sequents, sequents of level 2 have collections of sequents of level 1 on the left and right of the turnstile, etc. The rules we gave for modal constants involved sequents of level 2, whereas rules for other customary logical constants of first–order logic involved only (...) of level 1. Here we show starting from the same sequent rules of higher level we can obtain sequent formulations of intuitionistic analogues of S5 and S4. We presuppose for this paper an acquaintance with [2]. (shrink)
     
    Export citation  
     
    Bookmark  
  33.  39
    Uniform interpolation and sequent calculi in modal logic.Rosalie Iemhoff - 2019 - Archive for Mathematical Logic 58 (1-2):155-181.
    A method is presented that connects the existence of uniform interpolants to the existence of certain sequent calculi. This method is applied to several modal logics and is shown to cover known results from the literature, such as the existence of uniform interpolants for the modal logic \. New is the result that \ has uniform interpolation. The results imply that for modal logics \ and \, which are known not to have uniform interpolation, certain sequent calculi (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  34.  14
    A Sequent Calculus for the Lesniewskian Modal Logic.Mitio Takano - 1994 - Annals of the Japan Association for Philosophy of Science 8 (4):191-201.
  35.  28
    Fusion of sequent modal logic systems labelled with truth values.João Rasga, Karina Roggia & Cristina Sernadas - 2010 - Logic Journal of the IGPL 18 (6):893-920.
    Fusion is a well-known form of combining normal modal logics endowed with a Hilbert calculi and a Kripke semantics. Herein, fusion is studied over logic systems using sequent calculi labelled with truth values and with a semantics based on a two-sorted algebra allowing, in particular, the representation of general Kripke structures. A wide variety of logics, including non-classical logics like, for instance, modal logics and intuitionistic logic can be presented by logic systems of this kind. A categorical approach (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  37
    A Nonmonotonic Modal Relevant Sequent Calculus.Shuhei Shimamura - 2017 - In Alexandru Baltag, Jeremy Seligman & Tomoyuki Yamada (eds.), Logic, Rationality, and Interaction (LORI 2017, Sapporo, Japan). Springer. pp. 570-584.
    Motivated by semantic inferentialism and logical expressivism proposed by Robert Brandom, in this paper, I submit a nonmonotonic modal relevant sequent calculus equipped with special operators, □ and R. The base level of this calculus consists of two different types of atomic axioms: material and relevant. The material base contains, along with all the flat atomic sequents (e.g., Γ0, p |~0 p), some non-flat, defeasible atomic sequents (e.g., Γ0, p |~0 q); whereas the relevant base consists of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Kripke-Completeness and Sequent Calculus for Quasi-Boolean Modal Logic.Minghui Ma & Juntong Guo - 2025 - Studia Logica 113 (1):49-78.
    Quasi-Boolean modal algebras are quasi-Boolean algebras with a modal operator satisfying the interaction axiom. Sequential quasi-Boolean modal logics and the relational semantics are introduced. Kripke-completeness for some quasi-Boolean modal logics is shown by the canonical model method. We show that every descriptive persistent quasi-Boolean modal logic is canonical. The finite model property of some quasi-Boolean modal logics is proved. A cut-free Gentzen sequent calculus for the minimal quasi-Boolean logic is developed and we show that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  3
    Nested Sequents or Tree-Hypersequents—A Survey.Björn Lellmann & Francesca Poggiolesi - 2024 - In Yale Weiss & Romina Birman (eds.), Saul Kripke on Modal Logic. Cham: Springer. pp. 243-301.
    This paper presents an overview of the methods of nested sequents or tree-hypersequents that were originally introduced to provide a comprehensive proof theory for modal logic. The paper retraces the history of how these methods have developed. Its aim is also to present, in an unified and harmonious way, the most recent results that have been obtained in this framework. These results encompass several technical achievements, such as the interpolation theorem and the construction of countermodels. Special emphasis is (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  39.  18
    Correction to: Sequent Systems for Negative Modalities.Ori Lahav, João Marcos & Yoni Zohar - 2019 - Logica Universalis 13 (1):135-135.
    In the original publication, the corresponding author was indicated incorrectly. The correct corresponding author of the article should be Ori Lahav. The original article has been updated accordingly.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40. Cut-free sequent and tableau systems for propositional diodorean modal logics.Rajeev Goré - 1994 - Studia Logica 53 (3):433 - 457.
    We present sound, (weakly) complete and cut-free tableau systems for the propositional normal modal logicsS4.3, S4.3.1 andS4.14. When the modality is given a temporal interpretation, these logics respectively model time as a linear dense sequence of points; as a linear discrete sequence of points; and as a branching tree where each branch is a linear discrete sequence of points.Although cut-free, the last two systems do not possess the subformula property. But for any given finite set of formulaeX the superformulae (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  40
    Labeled sequent calculus for justification logics.Meghdad Ghari - 2017 - Annals of Pure and Applied Logic 168 (1):72-111.
    Justification logics are modal-like logics that provide a framework for reasoning about justifications. This paper introduces labeled sequent calculi for justification logics, as well as for combined modal-justification logics. Using a method due to Sara Negri, we internalize the Kripke-style semantics of justification and modal-justification logics, known as Fitting models, within the syntax of the sequent calculus to produce labeled sequent calculi. We show that all rules of these systems are invertible and the structural rules (weakening and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  42.  32
    Correction to: Cut-free Sequent Calculus and Natural Deduction for the Tetravalent Modal Logic.Martín Figallo - 2022 - Studia Logica 110 (3):879-879.
  43.  61
    Sequent-systems and groupoid models. I.Kosta Došen - 1988 - Studia Logica 47 (4):353 - 385.
    The purpose of this paper is to connect the proof theory and the model theory of a family of propositional logics weaker than Heyting's. This family includes systems analogous to the Lambek calculus of syntactic categories, systems of relevant logic, systems related toBCK algebras, and, finally, Johansson's and Heyting's logic. First, sequent-systems are given for these logics, and cut-elimination results are proved. In these sequent-systems the rules for the logical operations are never changed: all changes are made in the structural (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  44.  18
    Proof theory: sequent calculi and related formalisms.Katalin Bimbo - 2014 - Boca Raton: CRC Press, Taylor & Francis Group.
    Sequent calculi constitute an interesting and important category of proof systems. They are much less known than axiomatic systems or natural deduction systems are, and they are much less known than they should be. Sequent calculi were designed as a theoretical framework for investigations of logical consequence, and they live up to the expectations completely as an abundant source of meta-logical results. The goal of this book is to provide a fairly comprehensive view of sequent calculi -- including a wide (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  45. A purely syntactic and cut-free sequent calculus for the modal logic of provability.Francesca Poggiolesi - 2009 - Review of Symbolic Logic 2 (4):593-611.
    In this paper we present a sequent calculus for the modal propositional logic GL (the logic of provability) obtained by means of the tree-hypersequent method, a method in which the metalinguistic strength of hypersequents is improved, so that we can simulate trees shapes. We prove that this sequent calculus is sound and complete with respect to the Hilbert-style system GL, that it is contraction free and cut free and that its logical and modal rules are invertible. No explicit (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  46.  56
    Sequent-systems and groupoid models. II.Kosta Došen - 1989 - Studia Logica 48 (1):41 - 65.
    The purpose of this paper is to connect the proof theory and the model theory of a family of prepositional logics weaker than Heyting's. This family includes systems analogous to the Lambek calculus of syntactic categories, systems of relevant logic, systems related to BCK algebras, and, finally, Johansson's and Heyting's logic. First, sequent-systems are given for these logics, and cut-elimination results are proved. In these sequent-systems the rules for the logical operations are never changed: all changes are made in the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  47.  15
    Cut Elimination for Extended Sequent Calculi.Simone Martini, Andrea Masini & Margherita Zorzi - 2023 - Bulletin of the Section of Logic 52 (4):459-495.
    We present a syntactical cut-elimination proof for an extended sequent calculus covering the classical modal logics in the \(\mathsf{K}\), \(\mathsf{D}\), \(\mathsf{T}\), \(\mathsf{K4}\), \(\mathsf{D4}\) and \(\mathsf{S4}\) spectrum. We design the systems uniformly since they all share the same set of rules. Different logics are obtained by “tuning” a single parameter, namely a constraint on the applicability of the cut rule and on the (left and right, respectively) rules for \(\Box\) and \(\Diamond\). Starting points for this research are 2-sequents and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  50
    Negative modalities, consistency and determinedness.Adriano Dodó & João Marcos - 2014 - Electronic Notes in Theoretical Computer Science 300:21-45.
    We study a modal language for negative operators—an intuitionistic-like negation and its paraconsistent dual—added to (bounded) distributive lattices. For each non-classical negation an extra operator is hereby adjoined in order to allow for standard logical inferences to be opportunely restored. We present abstract characterizations and exhibit the main properties of each kind of negative modality, as well as of the associated connectives that express consistency and determinedness at the object-language level. Appropriate sequent-style proof systems and adequate kripke semantics are (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  49.  29
    Sequent Calculi for Intuitionistic Linear Logic with Strong Negation.Norihiro Kamide - 2002 - Logic Journal of the IGPL 10 (6):653-678.
    We introduce an extended intuitionistic linear logic with strong negation and modality. The logic presented is a modal extension of Wansing's extended linear logic with strong negation. First, we propose three types of cut-free sequent calculi for this new logic. The first one is named a subformula calculus, which yields the subformula property. The second one is termed a dual calculus, which has positive and negative sequents. The third one is called a triple-context calculus, which is regarded as (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  50. Errata to Cambridge Computer Laboratory technical report number 257: Cut-free sequent and tableau systems for propositional normal modal logics by.Rajeev Gore - unknown
    The main technical errors are in the literature survey. On pages 44, 93-94, 131 and 133 I claim that Fitting's and/or Rautenberg's systems are incomplete because they omit contraction. The claim is wrong because contraction is implicit in their set notation. Their systems are complete because they allow contraction on any formula whereas the systems in this technical report explicitly build contraction into certain rules, allowing contraction only on certain types of formulae. Please accept my apologies for any confusion this (...)
     
    Export citation  
     
    Bookmark  
1 — 50 / 973