This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related

Contents
3 found
Order:
  1. Social Choice Should Guide AI Alignment in Dealing with Diverse Human Feedback.Vincent Conitzer, Rachel Freedman, Jobst Heitzig, Wesley H. Holliday, Bob M. Jacobs, Nathan Lambert, Milan Mosse, Eric Pacuit, Stuart Russell, Hailey Schoelkopf, Emanuel Tewolde & William S. Zwicker - forthcoming - Proceedings of the Forty-First International Conference on Machine Learning.
    Foundation models such as GPT-4 are fine-tuned to avoid unsafe or otherwise problematic behavior, such as helping to commit crimes or producing racist text. One approach to fine-tuning, called reinforcement learning from human feedback, learns from humans' expressed preferences over multiple outputs. Another approach is constitutional AI, in which the input from humans is a list of high-level principles. But how do we deal with potentially diverging input from humans? How can we aggregate the input into consistent data about "collective" (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. Generalization Bias in Large Language Model Summarization of Scientific Research.Uwe Peters & Benjamin Chin-Yee - forthcoming - Royal Society Open Science.
    Artificial intelligence chatbots driven by large language models (LLMs) have the potential to increase public science literacy and support scientific research, as they can quickly summarize complex scientific information in accessible terms. However, when summarizing scientific texts, LLMs may omit details that limit the scope of research conclusions, leading to generalizations of results broader than warranted by the original study. We tested 10 prominent LLMs, including ChatGPT-4o, ChatGPT-4.5, DeepSeek, LLaMA 3.3 70B, and Claude 3.7 Sonnet, comparing 4900 LLM-generated summaries to (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  3. From Enclosure to Foreclosure and Beyond: Opening AI’s Totalizing Logic.Katia Schwerzmann - forthcoming - AI and Society.
    This paper reframes the issue of appropriation, extraction, and dispossession through AI—an assemblage of machine learning models trained on big data—in terms of enclosure and foreclosure. While enclosures are the product of a well-studied set of operations pertaining to both the constitution of the sovereign State and the primitive accumulation of capital, here, I want to recover an older form of the enclosure operation to then contrast it with foreclosure to better understand the effects of current algorithmic rationality. I argue (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark