Menger remainders of topological groups

Archive for Mathematical Logic 55 (5-6):767-784 (2016)
  Copy   BIBTEX

Abstract

In this paper we discuss what kind of constrains combinatorial covering properties of Menger, Scheepers, and Hurewicz impose on remainders of topological groups. For instance, we show that such a remainder is Hurewicz if and only it is σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-compact. Also, the existence of a Scheepers non-σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-compact remainder of a topological group follows from CH and yields a P-point, and hence is independent of ZFC. We also make an attempt to prove a dichotomy for the Menger property of remainders of topological groups in the style of Arhangel’skii.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,219

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.

Analytics

Added to PP
2017-11-06

Downloads
10 (#1,474,523)

6 months
5 (#1,053,842)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Mathias–Prikry and Laver–Prikry type forcing.Michael Hrušák & Hiroaki Minami - 2014 - Annals of Pure and Applied Logic 165 (3):880-894.

Add more references