Order:
  1.  59
    On the length of chains of proper subgroups covering a topological group.Taras Banakh, Dušan Repovš & Lyubomyr Zdomskyy - 2011 - Archive for Mathematical Logic 50 (3-4):411-421.
    We prove that if an ultrafilter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is not coherent to a Q-point, then each analytic non-σ-bounded topological group G admits an increasing chain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle G_\alpha:\alpha < \mathfrak b(\mathcal L)\rangle}$$\end{document} of its proper subgroups such that: (i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcup_{\alpha}G_\alpha=G}$$\end{document}; and (ii) For every σ-bounded subgroup H of G there exists α such that \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  41
    Packing Index of Subsets in Polish Groups.Taras Banakh, Nadya Lyaskovska & Dušan Repovš - 2009 - Notre Dame Journal of Formal Logic 50 (4):453-468.
    For a subset A of a Polish group G, we study the (almost) packing index pack( A) (respectively, Pack( A)) of A, equal to the supremum of cardinalities |S| of subsets $S\subset G$ such that the family of shifts $\{xA\}_{x\in S}$ is (almost) disjoint (in the sense that $|xA\cap yA|<|G|$ for any distinct points $x,y\in S$). Subsets $A\subset G$ with small (almost) packing index are large in a geometric sense. We show that $\pack}(A)\in\mathbb{N}\cup\{\aleph_0,\mathfrak{c}\}$ for any σ-compact subset A of a (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  25
    Selection properties of the split interval and the Continuum Hypothesis.Taras Banakh - 2020 - Archive for Mathematical Logic 60 (1-2):121-133.
    We prove that every usco multimap $$\varPhi :X\rightarrow Y$$ Φ : X → Y from a metrizable separable space X to a GO-space Y has an $$F_\sigma $$ F σ -measurable selection. On the other hand, for the split interval $${\ddot{\mathbb I}}$$ I ¨ and the projection $$P:{{\ddot{\mathbb I}}}^2\rightarrow \mathbb I^2$$ P : I ¨ 2 → I 2 of its square onto the unit square $$\mathbb I^2$$ I 2, the usco multimap $${P^{-1}:\mathbb I^2\multimap {{\ddot{\mathbb I}}}^2}$$ P - 1 : (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark