Weihrauch degrees, omniscience principles and weak computability

Journal of Symbolic Logic 76 (1):143 - 176 (2011)
  Copy   BIBTEX

Abstract

In this paper we study a reducibility that has been introduced by Klaus Weihrauch or, more precisely, a natural extension for multi-valued functions on represented spaces. We call the corresponding equivalence classes Weihrauch degrees and we show that the corresponding partial order induces a lower semi-lattice. It turns out that parallelization is a closure operator for this semi-lattice and that the parallelized Weihrauch degrees even form a lattice into which the Medvedev lattice and the Turing degrees can be embedded. The importance of Weihrauch degrees is based on the fact that multi-valued functions on represented spaces can be considered as realizers of mathematical theorems in a very natural way and studying the Weihrauch reductions between theorems in this sense means to ask which theorems can be transformed continuously or computably into each other. As crucial corner points of this classification scheme the limited principle of omniscience LPO, the lesser limited principle of omniscience LLPO and their parallelizations are studied. It is proved that parallelized LLPO is equivalent to Weak Kőnig's Lemma and hence to the Hahn—Banach Theorem in this new and very strong sense. We call a multi-valued function weakly computable if it is reducible to the Weihrauch degree of parallelized LLPO and we present a new proof, based on a computational version of Kleene's ternary logic, that the class of weakly computable operations is closed under composition. Moreover, weakly computable operations on computable metric spaces are characterized as operations that admit upper semi-computable compact-valued selectors and it is proved that any single-valued weakly computable operation is already computable in the ordinary sense

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,774

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Completion of choice.Vasco Brattka & Guido Gherardi - 2021 - Annals of Pure and Applied Logic 172 (3):102914.
Weihrauch Goes Brouwerian.Vasco Brattka & Guido Gherardi - 2020 - Journal of Symbolic Logic 85 (4):1614-1653.
Effective Borel measurability and reducibility of functions.Vasco Brattka - 2005 - Mathematical Logic Quarterly 51 (1):19-44.
Borel complexity and computability of the Hahn–Banach Theorem.Vasco Brattka - 2008 - Archive for Mathematical Logic 46 (7-8):547-564.
A journey through computability, topology and analysis.Manlio Valenti - 2022 - Bulletin of Symbolic Logic 28 (2):266-267.
On computable numberings of families of Turing degrees.Marat Faizrahmanov - 2024 - Archive for Mathematical Logic 63 (5):609-622.
How Incomputable Is the Separable Hahn-Banach Theorem?Guido Gherardi & Alberto Marcone - 2009 - Notre Dame Journal of Formal Logic 50 (4):393-425.
Inside the Muchnik degrees I: Discontinuity, learnability and constructivism.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (5):1058-1114.

Analytics

Added to PP
2013-09-30

Downloads
44 (#485,320)

6 months
14 (#206,617)

Historical graph of downloads
How can I increase my downloads?

Author's Profile