Algebraic Structures Formalizing the Logic of Quantum Mechanics Incorporating Time Dimension

Studia Logica 113 (1):163-181 (2025)
  Copy   BIBTEX

Abstract

As Classical Propositional Logic finds its algebraic counterpart in Boolean algebras, the logic of Quantum Mechanics, as outlined within G. Birkhoff and J. von Neumann’s approach to Quantum Theory (Birkhoff and von Neumann in Ann Math 37:823–843, 1936) [see also (Husimi in I Proc Phys-Math Soc Japan 19:766–789, 1937)] finds its algebraic alter ego in orthomodular lattices. However, this logic does not incorporate time dimension although it is apparent that the propositions occurring in the logic of Quantum Mechanics are depending on time. The aim of the present paper is to show that tense operators can be introduced in every logic based on a complete lattice, in particular in the logic of quantum mechanics based on a complete orthomodular lattice. If the time set is given together with a preference relation, we introduce tense operators in a purely algebraic way. We derive several important properties of such operators, in particular we show that they form dynamic pairs and, altogether, a dynamic algebra. We investigate connections of these operators with logical connectives conjunction and implication derived from Sasaki projections in an orthomodular lattice. Then we solve the converse problem, namely to find for given time set and given tense operators a time preference relation in order that the resulting time frame induces the given operators. We show that the given operators can be obtained as restrictions of operators induced by a suitable extended time frame.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,219

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
yesterday

Downloads
0

6 months
0

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references