Abstract
Tense operators in effect algebras play a key role for the representation of the dynamics of formally described physical systems. For this, it is important to know how to construct them on a given effect algebra \( E\) and how to compute all possible pairs of tense operators on \( E\) . However, we firstly need to derive a time frame which enables these constructions and computations. Hence, we usually apply a suitable set of states of the effect algebra \( E\) in question. To approximate physical reality in quantum mechanics, we use only the so-called Jauch–Piron states on \( E\) in our paper. To realize our constructions, we are restricted on lattice effect algebras only