Noninvasive determination of the optical properties of adult brain: Near-infrared spectroscopy approach

Abstract

The basic parameters for physiological measurements provided by near-infrared spectroscopy are the local absorption and scattering coefficients. For the adult human head, they have been difficult to measure noninvasively because of the layered structure of the head. The results of measurements of absorption and reduced scattering coefficients through the forehead on 30 adult volunteers using a multi-distance frequency domain method are reported. The optode separation distance ranged from 10 to 80 mm and measurements were recorded at 758 and 830 nm. The measured absorption and reduced scattering coefficients of the forehead were used to evaluate the hemoglobin content in the scalp and brain as well as cerebral oxygen saturation. We found that cerebral oxygenation was relatively narrowly distributed within the subject group, whereas hemoglobin concentrations had a relatively broader distribution. We found that as the optode distance increased, the absorption coefficients increased and the scattering coefficients decreased, retrieving the optical values of scalp and brain for shorter and longer optode distances, respectively. We present the transition curves of the absorption and reduced scattering coefficients as functions of the optode distance. In order to verify the values for each layer, a comparison between the experimental data and a prediction based on the two-layer model of the adult head was carried out. The thicknesses of scalp and skull for the two-layer model were obtained by magnetic resonance imaging of a subject's head. The optical parameters obtained from the two-layer model agreed very well with those measured by the multidistance method. © 2004 Society of Photo-Optical Instrumentation Engineers.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,369

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2017-04-03

Downloads
4 (#1,806,247)

6 months
2 (#1,690,857)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Ursula Wolf
Universität Mannheim
Rajeev Gupta
Jawaharlal Nehru University
1 more

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references