The pursuit of the riemann hypothesis

Abstract

With Fermat’s Last Theorem finally disposed of by Andrew Wiles in 1994, it’s only natural that popular attention should turn to arguably the most outstanding unsolved problem in mathematics: the Riemann Hypothesis. Unlike Fermat’s Last Theorem, however, the Riemann Hypothesis requires quite a bit of mathematical background to even understand what it says. And of course both require a great deal of background in order to understand their significance. The Riemann Hypothesis was first articulated by Bernhard Riemann in an address to the Berlin Academy in 1859. The address was called “On the Number of Prime Numbers Less Than a Given Quantity” and among the many interesting results and methods contained in that paper was Riemann’s famous hypothesis: all non-trivial zeros of the zeta function, ζ(s) = ∞ n=1 n−s, have real part 1/2. Although the zeta function as stated and considered as a real-valued function is defined only for s > 1, it can be suitably extended. It can, as a matter of fact, be extended to have as its domain all the complex numbers (numbers of the form x + yi, where x and y √ −1) with the exception of 1 + 0i (at which point are real numbers and i =.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,343

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-03-04

Downloads
330 (#88,566)

6 months
330 (#6,645)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Mark Colyvan
University of Sydney

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references