Abstract
Stemming from our energy localization hypothesis that energy in general relativity is localized in the regions of the energy-momentum tensor, we had devised a test with the classic Eddington spinning rod. Consistent with the localization hypothesis, we found that the Tolman energy integral did not change in the course of the motion. This implied that gravitational waves do not carry energy in vacuum, bringing into question the demand for the quantization of gravity. Also if information is conveyed by the waves, the traditional view that information transfer demands energy is challenged. Later, we showed that the “body” angular momentum changed at a rate indicating that the moment of inertia increased to higher order, contrary to traditional expectations. We consider the challenges facing the development of a localized expression for the total angular momentum of the body including the contribution from gravity. We find that Komar's expression does not lead to an adequate formulation of localized angular momentum