Abstract
There exist different kinds of averaging of the differences of the energy–momentum and angular momentum in normal coordinates NC(P) which give tensorial quantities. The obtained averaged quantities are equivalent mathematically because they differ only by constant scalar dimensional factors. One of these averaging was used in our papers [J. Garecki, Rep. Math. Phys. 33, 57 (1993); Int. J. Theor. Phys. 35, 2195 (1996); Rep. Math. Phys. 40, 485 (1997); J. Math. Phys. 40, 4035 (1999); Rep. Math. Phys. 43, 397 (1999); Rep. Math. Phys. 44, 95 (1999); Ann. Phys. (Leipzig) 11, 441 (2002); M.P. Dabrowski and J. Garecki, Class. Quantum. Grar. 19, 1 (2002)] giving the canonical superenergy and angular supermomentum tensors. In this paper we present another averaging of the differences of the energy–momentum and angular momentum which gives tensorial quantities with proper dimensions of the energy–momentum and angular momentum densities. We have called these tensorial quantities “the averaged relative energy–momentum and angular momentum tensors”. These tensors are very closely related to the canonical superenergy and angular supermomentum tensors and they depend on some fundamental length L > 0. The averaged relative energy–momentum and angular momentum tensors of the gravitational field obtained in the paper can be applied, like the canonical superenergy and angular supermomentum tensors, to coordinate independent analysis (local and in special cases also global) of this field. Up to now we have applied the averaged relative energy–momentum tensors to analyze vacuum gravitational energy and momentum and to analyze energy and momentum of the Friedman (and also more general, only homogeneous) universes. The obtained results are interesting, e.g., the averaged relative energy density is positive definite for the all Friedman and other universes which have been considered in this paper