Algebraic aspects of deduction theorems

Studia Logica 44 (4):369 - 387 (1985)
  Copy   BIBTEX

Abstract

The first known statements of the deduction theorems for the first-order predicate calculus and the classical sentential logic are due to Herbrand [8] and Tarski [14], respectively. The present paper contains an analysis of closure spaces associated with those sentential logics which admit various deduction theorems. For purely algebraic reasons it is convenient to view deduction theorems in a more general form: given a sentential logic C (identified with a structural consequence operation) in a sentential language I, a quite arbitrary set P of formulas of I built up with at most two distinct sentential variables p and q is called a uniform deduction theorem scheme for C if it satisfies the following condition: for every set X of formulas of I and for any formulas and , C(X{{a}}) iff P(, ) AC(X). [P(, ) denotes the set of formulas which result by the simultaneous substitution of for p and for q in all formulas in P]. The above definition encompasses many particular formulations of theorems considered in the literature to be deduction theorems. Theorem 1.3 gives necessary and sufficient conditions for a logic to have a uniform deduction theorem scheme. Then, given a sentential logic C with a uniform deduction theorem scheme, the lattices of deductive filters on the algebras A similar to the language of C are investigated. It is shown that the join-semilattice of finitely generated (= compact) deductive filters on each algebra A is dually Brouwerian.

Other Versions

original Czelakowski, Janusz (1983) "Algebraic aspects of deduction theorems". Bulletin of the Section of Logic 12(3):111-114

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,809

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Algebraic aspects of deduction theorems.Janusz Czelakowski - 1983 - Bulletin of the Section of Logic 12 (3):111-114.
Deduction theorems for weak implicational logics.M. W. Bunder - 1982 - Studia Logica 41 (2-3):95 - 108.
Local deductions theorems.Janusz Czelakowski - 1986 - Studia Logica 45 (4):377 - 391.
Deduction Theorems within RM and Its Extensions.J. Czelakowski & W. Dziobiak - 1999 - Journal of Symbolic Logic 64 (1):279-290.
Techniques of Deductive Inference. [REVIEW]J. M. P. - 1966 - Review of Metaphysics 20 (1):155-155.
Contextual Deduction Theorems.J. G. Raftery - 2011 - Studia Logica 99 (1-3):279-319.
Filter distributive logics.Janusz Czelakowski - 1984 - Studia Logica 43 (4):353 - 377.

Analytics

Added to PP
2009-01-28

Downloads
69 (#304,173)

6 months
7 (#699,353)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

Fregean logics.J. Czelakowski & D. Pigozzi - 2004 - Annals of Pure and Applied Logic 127 (1-3):17-76.
The Deduction Theorem (Before and After Herbrand).Curtis Franks - 2021 - History and Philosophy of Logic 42 (2):129-159.
Local deductions theorems.Janusz Czelakowski - 1986 - Studia Logica 45 (4):377 - 391.

View all 28 citations / Add more citations

References found in this work

Equivalential logics.Janusz Czelakowski - 1981 - Studia Logica 40 (3):227-236.
The lattice of modal logics: An algebraic investigation.W. J. Blok - 1980 - Journal of Symbolic Logic 45 (2):221-236.
Reduced products of logical matrices.Janusz Czelakowski - 1980 - Studia Logica 39 (1):19 - 43.

View all 10 references / Add more references