Categorization of Hindi phonemes by neural networks

AI and Society 17 (3-4):375-382 (2003)
  Copy   BIBTEX

Abstract

The prime objective of this paper is to conduct phoneme categorization experiments for Indian languages. In this direction a major effort has been made to categorize Hindi phonemes using a time delay neural network (TDNN), and compare the recognition scores with other languages. A total of six neural nets aimed at the major coarse of phonetic classes in Hindi were trained. Evaluation of each net on 350 training tokens and 40 test tokens revealed a 99% recognition rate for vowel classes, 87% for unvoiced stops, 82% for voiced stops, 94.7% for semi vowels, 98.1% for nasals and 96.4% for fricatives. A new feature vector normalisation technique has been proposed to improve the recognition scores

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,865

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Human Skin Color Detection Using Neural Networks.Arvin Agah & Mohammadreza Hajiarbabi - 2015 - Journal of Intelligent Systems 24 (4):425-436.

Analytics

Added to PP
2013-11-20

Downloads
46 (#479,192)

6 months
11 (#338,628)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references