Abstract
Substrate cycles are ubiquitous structures of the cellular metabolism (e.g. Krebs cycle, fatty acids -oxydation cycles, etc... ). Moiety-conserved cycles (e.g. adenine nucleotides and NADH/NAD, etc...) are also important.The role played by such cycles in the metabolism and its regulation is not clearly understood so far. However, it was shown that these cycles can generate multistationarity (bistability), irreversible transitions, enhancement of sensitivity, temporal oscillations and chaotic motions (Hervagault & Canu, 1987; Hervagault & Cimino, 1989; Reich & Sel'kov, 1981; Ricard & Soulié, 1982). Fig. 1: Scheme of the open binary substrate cycle under study. The substrate S is converted into P with a net rate v2. Substrate P is converted in turn into S with a net rate v3. Step v2 is inhibited by excess of the substrate, S. In addition, the cycle operates under open conditions, that is zero-order input of S at rates \ga0(v1) and first order outputs of S and P at rates \gaS and \gaP(v4), respectively.