Abstract
The literature on common pool resource (CPR) governance lists numerous factors that influence whether a given CPR system achieves ecological long-term sustainability. Up to now there is no comprehensive model to integrate these factors or to explain success within or across cases and sectors. Difficulties include the absence of large-N-studies (Poteete 2008), the incomparability of single case studies, and the interdependence of factors (Agrawal and Chhatre 2006). We propose (1) a synthesis of 24 success factors based on the current SES framework and a literature review; (2) the application of neural networks on a database of CPR management case studies in an attempt to test the viability of this synthesis.
This method allows us to obtain an implicit quantitative and rather precise model of the interdependencies in CPR systems. Given such a model, every success factor in each case can be manipulated separately, yielding different predictions for success. This could become be a fast and inexpensive way to analyze, predict and optimize performance for communities world-wide facing CPR challenges. Existing theoretical frameworks could be improved as well.