The Copernican Multiverse of Sets

Review of Symbolic Logic 15 (4):1033-1069 (2022)
  Copy   BIBTEX

Abstract

We develop an untyped framework for the multiverse of set theory. $\mathsf {ZF}$ is extended with semantically motivated axioms utilizing the new symbols $\mathsf {Uni}(\mathcal {U})$ and $\mathsf {Mod}(\mathcal {U, \sigma })$, expressing that $\mathcal {U}$ is a universe and that $\sigma $ is true in the universe $\mathcal {U}$, respectively. Here $\sigma $ ranges over the augmented language, leading to liar-style phenomena that are analyzed. The framework is both compatible with a broad range of multiverse conceptions and suggests its own philosophically and semantically motivated multiverse principles. In particular, the framework is closely linked with a deductive rule of Necessitation expressing that the multiverse theory can only prove statements that it also proves to hold in all universes. We argue that this may be philosophically thought of as a Copernican principle that the background theory does not hold a privileged position over the theories of its internal universes. Our main mathematical result is a lemma encapsulating a technique for locally interpreting a wide variety of extensions of our basic framework in more familiar theories. We apply this to show, for a range of such semantically motivated extensions, that their consistency strength is at most slightly above that of the base theory $\mathsf {ZF}$, and thus not seriously limiting to the diversity of the set-theoretic multiverse. We end with case studies applying the framework to two multiverse conceptions of set theory: arithmetic absoluteness and Joel D. Hamkins’ multiverse theory.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,423

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A naturalistic justification of the generic multiverse with a core.Matteo de Ceglie - 2018 - Contributions of the Austrian Ludwig Wittgenstein Society 26:34-36.
The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
Hierarchical Multiverse of Sets.Ahmet Çevik - 2023 - Notre Dame Journal of Formal Logic 64 (4):545-570.
On the Set-Generic Multiverse.Sy-David Friedman, Sakaé Fuchino & Hiroshi Sakai - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Basel, Switzerland: Birkhäuser. pp. 109-124.
Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.

Analytics

Added to PP
2023-01-05

Downloads
28 (#807,648)

6 months
7 (#736,605)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
Truth and paradox.Anil Gupta - 1982 - Journal of Philosophical Logic 11 (1):1-60.
Notes on naive semantics.Hans Herzberger - 1982 - Journal of Philosophical Logic 11 (1):61 - 102.
How truthlike can a predicate be? A negative result.Vann McGee - 1985 - Journal of Philosophical Logic 14 (4):399 - 410.
Classes and truths in set theory.Kentaro Fujimoto - 2012 - Annals of Pure and Applied Logic 163 (11):1484-1523.

View all 11 references / Add more references