Infinite numbers are large finite numbers

Abstract

In this paper, I suggest that infinite numbers are large finite numbers, and that infinite numbers, properly understood, are 1) of the structure omega + (omega* + omega)Ө + omega*, and 2) the part is smaller than the whole. I present an explanation of these claims in terms of epistemic limitations. I then consider the importance, part of which is demonstrating the contradiction that lies at the heart of Cantorian set theory: the natural numbers are too large to be counted by any finite number, but too small to be counted by any infinite number – there is no number of natural numbers.

Other Versions

No versions found

Links

PhilArchive

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2011-07-12

Downloads
940 (#22,828)

6 months
81 (#76,562)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

References found in this work

No references found.

Add more references