The Future of the Concept of Infinite Number

Abstract

In ‘The Train Paradox’, I argued that sequential random selections from the natural numbers would grow through time. I used this claim to present a paradox. In response to this proposed paradox, Jon Pérez Laraudogoitia has argued that random selections from the natural numbers do not grow through time. In this paper, I defend and expand on the argument that random selections from the natural numbers grow through time. I also situate this growth of random selections in the context of my overall work on infinite number, which involves two main claims: 1) infinite numbers, properly understood, are the infinite natural numbers in a nonstandard model of the reals, and 2) ω is potentially infinite.

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2015-09-07

Downloads
252 (#104,767)

6 months
54 (#98,888)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references