Note on extensions of Heyting's arithmetic by adding the “creative subject”

Archive for Mathematical Logic 38 (3):145-152 (1999)
  Copy   BIBTEX

Abstract

Let HA be Heyting's arithmetic, and let CS denote the conjunction of Kreisel's axioms for the creative subject: \begin{eqnarray*} {\rm CS}_1.&&\quad \,\forall\, x (\qed_x A \vee \; \neg \qed_x A)\; ,\nn {\rm CS}_2. &&\quad \,\forall\, x (\qed_x A\to A)\; ,\nn {\rm CS}_3^{\rm S}. &&\quad A\to\,\exists\, x \qed_x A\; ,\nn {\rm CS}_4.&&\quad \,\forall\, x\,\forall\, y (\qed_x A & y \ge x\to\qed_y A)\; .\nn \end{eqnarray*} It is shown that the theory HA + CS with the induction schema restricted to arithmetical (i.e. not containing $\qed$ ) formulas is conservative over HA

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,219

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A small reflection principle for bounded arithmetic.Rineke Verbrugge & Albert Visser - 1994 - Journal of Symbolic Logic 59 (3):785-812.
Restricted mad families.Osvaldo Guzmán, Michael Hrušák & Osvaldo Téllez - 2020 - Journal of Symbolic Logic 85 (1):149-165.
Linear independence of linear forms in polylogarithms.Raffaele Marcovecchio - 2006 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 5 (1):1-11.

Analytics

Added to PP
2013-12-01

Downloads
24 (#914,270)

6 months
11 (#354,748)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Creative subject, Beth models and neighbourhood functions.Victor N. Krivtsov - 1996 - Archive for Mathematical Logic 35 (2):89-102.

Add more references