A Special Case of Penrose’s Limit Theorem When Abstention is Allowed

Theory and Decision 64 (4):495-518 (2008)
  Copy   BIBTEX

Abstract

In general, analyses of voting power are performed through the notion of a simple voting game (SVG) in which every voter can choose between two options: ‘yes’ or ‘no’. Felsenthal and Machover [Felsenthal, D.S. and Machover, M. (1997), International Journal of Game Theory 26, 335–351.] introduced the concept of ternary voting games (TVGs) which recognizes abstention alongside. They derive appropriate generalizations of the Shapley–Shubik and Banzhaf indices in TVGs. Braham and Steffen [Braham, M. and Steffen, F. (2002), in Holler, et al. (eds.), Power and Fairness, Jahrbuch für Neue Politische Ökonomie 20, Mohr Siebeck, pp. 333–348.] argued that the decision-making structure of a TVG may not be justified. They propose a sequential structure in which voters first decide between participation and abstention and then between ‘yes’ or ‘no’. The purpose of this paper is two-fold. First, we compare the two approaches and show how the probabilistic interpretation of power provides a unifying characterization of analogues of the Banzhaf (Bz) measure. Second, using the probabilistic approach we shall prove a special case of Penrose’s Limit Theorem (PLT). This theorem deals with an asymptotic property in weighted voting games with an increasing number of voters. It says that under certain conditions the ratio between the voting power of any two voters (according to various measures of voting power) approaches the ratio between their weights. We show that PLT holds in TVGs for analogues of Bz measures, irrespective of the particular nature of abstention

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,561

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-12-01

Downloads
88 (#233,443)

6 months
13 (#235,795)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations