Abstract
To which ontological category do quantum systems belong? Although we usually speak of particles, it is well known that these peculiar items defy several traditional metaphysical principles. In the present chapter these challenges will be discussed in the light of certain distinctions usually not taken into account in the debate about the ontological nature of quantum systems. On this basis, it will be argued that an ontology of properties without individuals, framed in the algebraic formalism of quantum mechanics, provides adequate answers to the ontological challenges raised by the theory.What kind of item is a quantum system? In the practice of physics it is common to speak of quantum particles, as if they were items of a similar nature to classical items, but obeying different laws of motion. However, as is well known, quantum systems have such peculiar features that they challenge certain ontological principles and categories as understood in traditional metaphysics. In general, these features are analyzed in the context of the so-called problem of indistinguishability, which is a consequence of the particular statistical behavior of quantum systems. But the fact that certain items are “indistinguishable” is not the only difficulty to be overcome in order to elucidate the ontological category of quantum systems.