Determinacy of Reference, Schematic Theories, and Internal Categoricity

Studia Universitatis Babeş-Bolyai Philosophia:31-65 (2018)
  Copy   BIBTEX

Abstract

The article surveys the problem of the determinacy of reference in the contemporary philosophy of mathematics focusing on Peano arithmetic. I present the philosophical arguments behind the shift from the problem of the referential determinacy of singular mathematical terms to that of nonalgebraic/univocal theories. I examine Shaughan Lavine’s particular solution to this problem based on schematic theories and an internalized version of Dedekind’s categoricity theorem for Peano arithmetic. I will argue that Lavine’s detailed and sophisticated solution is unwarranted. However, some of the arguments that I present are applicable, mutatis mutandis, to all versions of internal categoricity conceived as a philosophical remedy for the problem of referential determinacy of arithmetical theories.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,865

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2024-12-12

Downloads
1 (#1,944,319)

6 months
1 (#1,886,846)

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references