Results for 'Determinacy of reference, Peano arithmetic, permutation argument, structuralism, Dedekind’s categoricity theorem, schematic theories, internal categoricity'

963 found
Order:
  1.  1
    Determinacy of Reference, Schematic Theories, and Internal Categoricity.Adrian Luduşan - 2018 - Studia Universitatis Babeş-Bolyai Philosophia:31-65.
    The article surveys the problem of the determinacy of reference in the contemporary philosophy of mathematics focusing on Peano arithmetic. I present the philosophical arguments behind the shift from the problem of the referential determinacy of singular mathematical terms to that of nonalgebraic/univocal theories. I examine Shaughan Lavine’s particular solution to this problem based on schematic theories and an internalized version of Dedekind’s categoricity theorem for Peano arithmetic. I will argue that Lavine’s detailed (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2. Categoricity, Open-Ended Schemas and Peano Arithmetic.Adrian Ludușan - 2015 - Logos and Episteme 6 (3):313-332.
    One of the philosophical uses of Dedekind’s categoricity theorem for Peano Arithmetic is to provide support for semantic realism. To this end, the logical framework in which the proof of the theorem is conducted becomes highly significant. I examine different proposals regarding these logical frameworks and focus on the philosophical benefits of adopting open-ended schemas in contrast to second order logic as the logical medium of the proof. I investigate Pederson and Rossberg’s critique of the ontological advantages (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3. Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  4.  34
    Peano’s structuralism and the birth of formal languages.Joan Bertran-San-Millán - 2022 - Synthese 200 (4):1-34.
    Recent historical studies have investigated the first proponents of methodological structuralism in late nineteenth-century mathematics. In this paper, I shall attempt to answer the question of whether Peano can be counted amongst the early structuralists. I shall focus on Peano’s understanding of the primitive notions and axioms of geometry and arithmetic. First, I shall argue that the undefinability of the primitive notions of geometry and arithmetic led Peano to the study of the relational features of the systems (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  14
    Permutation Arguments and Kunen’s Inconsistency Theorem.A. Salch - forthcoming - Foundations of Science:1-21.
    I offer a variant of Putnam’s “permutation argument,” originally an argument against metaphysical realism. This variant is called the “natural permutation argument.” I explain how the natural permutation argument generates a form of referential inscrutability which is not resolvable by consideration of “natural properties” in the sense of Lewis’s response to Putnam. However, unlike the classical permutation argument (which is applicable to nearly all interpretations of all first-order theories), the natural permutation argument only applies to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6. Relative categoricity and abstraction principles.Sean Walsh & Sean Ebels-Duggan - 2015 - Review of Symbolic Logic 8 (3):572-606.
    Many recent writers in the philosophy of mathematics have put great weight on the relative categoricity of the traditional axiomatizations of our foundational theories of arithmetic and set theory. Another great enterprise in contemporary philosophy of mathematics has been Wright's and Hale's project of founding mathematics on abstraction principles. In earlier work, it was noted that one traditional abstraction principle, namely Hume's Principle, had a certain relative categoricity property, which here we term natural relative categoricity. In this (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  7. Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  8. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Précis de philosophie de la logique et des mathématiques, Volume 2, philosophie des mathématiques.Andrew Arana & Marco Panza (eds.) - 2022 - Paris: Editions de la Sorbonne.
    The project of this Précis de philosophie de la logique et des mathématiques (vol. 1 under the direction of F. Poggiolesi and P. Wagner, vol. 2 under the direction of A. Arana and M. Panza) aims to offer a rich, systematic and clear introduction to the main contemporary debates in the philosophy of mathematics and logic. The two volumes bring together the contributions of thirty researchers (twelve for the philosophy of logic and eighteen for the philosophy of mathematics), specialists in (...)
     
    Export citation  
     
    Bookmark  
  10. Resplendent models and $${\Sigma_1^1}$$ -definability with an oracle.Andrey Bovykin - 2008 - Archive for Mathematical Logic 47 (6):607-623.
    In this article we find some sufficient and some necessary ${\Sigma^1_1}$ -conditions with oracles for a model to be resplendent or chronically resplendent. The main tool of our proofs is internal arguments, that is analogues of classical theorems and model-theoretic constructions conducted inside a model of first-order Peano Arithmetic: arithmetised back-and-forth constructions and versions of the arithmetised completeness theorem, namely constructions of recursively saturated and resplendent models from the point of view of a model of arithmetic. These (...) arguments are used in conjunction with Pabion’s theorem that ensures that certain oracles are coded in a sufficiently saturated model of arithmetic. Examples of applications are provided for the theories of dense linear orders and of discrete linear orders. These results are then generalised to other ω-categorical theories and theories with a unique countable recursively saturated model. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  99
    Deflationism, Arithmetic, and the Argument from Conservativeness.Daniel Waxman - 2017 - Mind 126 (502):429-463.
    Many philosophers believe that a deflationist theory of truth must conservatively extend any base theory to which it is added. But when applied to arithmetic, it's argued, the imposition of a conservativeness requirement leads to a serious objection to deflationism: for the Gödel sentence for Peano Arithmetic is not a theorem of PA, but becomes one when PA is extended by adding plausible principles governing truth. This paper argues that no such objection succeeds. The issue turns on how we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  12.  71
    Putnam, Peano, and the Malin Génie: could we possibly bewrong about elementary number-theory?Christopher Norris - 2002 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 33 (2):289-321.
    This article examines Hilary Putnam's work in the philosophy of mathematics and - more specifically - his arguments against mathematical realism or objectivism. These include a wide range of considerations, from Gödel's incompleteness-theorem and the limits of axiomatic set-theory as formalised in the Löwenheim-Skolem proof to Wittgenstein's sceptical thoughts about rule-following, Michael Dummett's anti-realist philosophy of mathematics, and certain problems – as Putnam sees them – with the conceptual foundations of Peano arithmetic. He also adopts a thought-experimental approach – (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  13.  57
    Uniqueness, collection, and external collapse of cardinals in ist and models of peano arithmetic.V. Kanovei - 1995 - Journal of Symbolic Logic 60 (1):318-324.
    We prove that in IST, Nelson's internal set theory, the Uniqueness and Collection principles, hold for all (including external) formulas. A corollary of the Collection theorem shows that in IST there are no definable mappings of a set X onto a set Y of greater (not equal) cardinality unless both sets are finite and #(Y) ≤ n #(X) for some standard n. Proofs are based on a rather general technique which may be applied to other nonstandard structures. In particular (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  14. (2 other versions)Frege's logic, theorem, and foundations for arithmetic.Edward N. Zalta - 2008 - Stanford Encyclopedia of Philosophy.
    In this entry, Frege's logic is introduced and described in some detail. It is shown how the Dedekind-Peano axioms for number theory can be derived from a consistent fragment of Frege's logic, with Hume's Principle replacing Basic Law V.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  15.  98
    X—Reference and the Permutation Argument.Richard Gaskin - 2011 - Proceedings of the Aristotelian Society 111 (2pt2):295-309.
    I argue that fidelity to the context principle requires us to construe reference as a theoretical relation. This point helps us understand the bearing of Putnam's permutation argument on the idea of a systematic theory of meaning. Notwithstanding objections that have been made against Putnam's deployment of that argument, it shows the reference relation to be indeterminate. But since the indeterminacy of reference arises from a metalinguistic perspective, our ability, as object‐language speakers, to talk about the ordinary features of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  42
    Ehrenfeucht’s Lemma in Set Theory.Gunter Fuchs, Victoria Gitman & Joel David Hamkins - 2018 - Notre Dame Journal of Formal Logic 59 (3):355-370.
    Ehrenfeucht’s lemma asserts that whenever one element of a model of Peano arithmetic is definable from another, they satisfy different types. We consider here the analogue of Ehrenfeucht’s lemma for models of set theory. The original argument applies directly to the ordinal-definable elements of any model of set theory, and, in particular, Ehrenfeucht’s lemma holds fully for models of set theory satisfying V=HOD. We show that the lemma fails in the forcing extension of the universe by adding a Cohen (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  17.  44
    Internal Perception: The Role of Bodily Information in Concepts and Word Mastery.Luigi Pastore & Sara Dellantonio - 2017 - Berlin, Heidelberg: Springer Berlin Heidelberg. Edited by Luigi Pastore.
    Chapter 1 First Person Access to Mental States. Mind Science and Subjective Qualities -/- Abstract. The philosophy of mind as we know it today starts with Ryle. What defines and at the same time differentiates it from the previous tradition of study on mind is the persuasion that any rigorous approach to mental phenomena must conform to the criteria of scientificity applied by the natural sciences, i.e. its investigations and results must be intersubjectively and publicly controllable. In Ryle’s view, philosophy (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  32
    Generalizations of gödel’s incompleteness theorems for ∑ N-definable theories of arithmetic.Makoto Kikuchi & Taishi Kurahashi - 2017 - Review of Symbolic Logic 10 (4):603-616.
    It is well known that Gödel’s incompleteness theorems hold for ∑1-definable theories containing Peano arithmetic. We generalize Gödel’s incompleteness theorems for arithmetically definable theories. First, we prove that every ∑n+1-definable ∑n-sound theory is incomplete. Secondly, we generalize and improve Jeroslow and Hájek’s results. That is, we prove that every consistent theory having ∏n+1set of theorems has a true but unprovable ∏nsentence. Lastly, we prove that no ∑n+1-definable ∑n-sound theory can prove its own ∑n-soundness. These three results are generalizations of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  19.  75
    Internal Categoricity in Arithmetic and Set Theory.Jouko Väänänen & Tong Wang - 2015 - Notre Dame Journal of Formal Logic 56 (1):121-134.
    We show that the categoricity of second-order Peano axioms can be proved from the comprehension axioms. We also show that the categoricity of second-order Zermelo–Fraenkel axioms, given the order type of the ordinals, can be proved from the comprehension axioms. Thus these well-known categoricity results do not need the so-called “full” second-order logic, the Henkin second-order logic is enough. We also address the question of “consistency” of these axiom systems in the second-order sense, that is, the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  20. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21. Arbitrary Reference in Logic and Mathematics.Massimiliano Carrara & Enrico Martino - 2024 - Springer Cham (Synthese Library 490).
    This book develops a new approach to plural arbitrary reference and examines mereology, including considering four theses on the alleged innocence of mereology. The authors have advanced the notion of plural arbitrary reference in terms of idealized plural acts of choice, performed by a suitable team of agents. In the first part of the book, readers will discover a revision of Boolosʼ interpretation of second order logic in terms of plural quantification and a sketched structuralist reconstruction of second-order arithmetic based (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  66
    Handbook of mathematical logic, edited by Barwise Jon with the cooperation of Keisler H. J., Kunen K., Moschovakis Y. N., and Troelstra A. S., Studies in logic and the foundations of mathematics, vol. 90, North-Holland Publishing Company, Amsterdam, New York, and Oxford, 1978 , xi + 1165 pp.Smoryński C.. D.1. The incompleteness theorems. Pp. 821–865.Schwichtenberg Helmut. D.2. Proof theory: some applications of cut-elimination. Pp. 867–895.Statman Richard. D.3. Herbrand's theorem and Gentzen's notion of a direct proof. Pp. 897–912.Feferman Solomon. D.4. Theories of finite type related to mathematical practice. Pp. 913–971.Troelstra A. S.. D.5. Aspects of constructive mathematics. Pp. 973–1052.Fourman Michael P.. D.6. The logic of topoi. Pp. 1053–1090.Barendregt Henk P.. D.1. The type free lambda calculus. Pp. 1091–1132.Paris Jeff and Harrington Leo. D.8. A mathematical incompleteness in Peano arithmetic. Pp. 1133–1142. [REVIEW]W. A. Howard - 1984 - Journal of Symbolic Logic 49 (3):980-988.
  23. (1 other version)Objects are (not) ...Friedrich Wilhelm Grafe - 2024 - Archive.Org.
    My goal in this paper is, to tentatively sketch and try defend some observations regarding the ontological dignity of object references, as they may be used from within in a formalized language. -/- Hence I try to explore, what properties objects are presupposed to have, in order to enter the universe of discourse of an interpreted formalized language. -/- First I review Frege′s analysis of the logical structure of truth value definite sentences of scientific colloquial language, to draw suggestions from (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  24. Incompleteness and inconsistency.Stewart Shapiro - 2002 - Mind 111 (444):817-832.
    Graham Priest's In Contradiction (Dordrecht: Martinus Nijhoff Publishers, 1987, chapter 3) contains an argument concerning the intuitive, or ‘naïve’ notion of (arithmetic) proof, or provability. He argues that the intuitively provable arithmetic sentences constitute a recursively enumerable set, which has a Gödel sentence which is itself intuitively provable. The incompleteness theorem does not apply, since the set of provable arithmetic sentences is not consistent. The purpose of this article is to sharpen Priest's argument, avoiding reference to informal notions, consensus, or (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  25. Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of this (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  26. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27. Completeness and categoricity: Frege, gödel and model theory.Stephen Read - 1997 - History and Philosophy of Logic 18 (2):79-93.
    Frege’s project has been characterized as an attempt to formulate a complete system of logic adequate to characterize mathematical theories such as arithmetic and set theory. As such, it was seen to fail by Gödel’s incompleteness theorem of 1931. It is argued, however, that this is to impose a later interpretation on the word ‘complete’ it is clear from Dedekind’s writings that at least as good as interpretation of completeness is categoricity. Whereas few interesting first-order mathematical theories are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  28.  87
    Axiomatizations of arithmetic and the first-order/second-order divide.Catarina Dutilh Novaes - 2019 - Synthese 196 (7):2583-2597.
    It is often remarked that first-order Peano Arithmetic is non-categorical but deductively well-behaved, while second-order Peano Arithmetic is categorical but deductively ill-behaved. This suggests that, when it comes to axiomatizations of mathematical theories, expressive power and deductive power may be orthogonal, mutually exclusive desiderata. In this paper, I turn to Hintikka’s :69–90, 1989) distinction between descriptive and deductive approaches in the foundations of mathematics to discuss the implications of this observation for the first-order logic versus second-order logic divide. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29. (1 other version)Focus restored: Comments on John MacFarlane.Bob Hale & Crispin Wright - 2009 - Synthese 170 (3):457 - 482.
    In “Double Vision Two Questions about the Neo-Fregean Programme”, John MacFarlane’s raises two main questions: (1) Why is it so important to neo-Fregeans to treat expressions of the form ‘the number of Fs’ as a species of singular term? What would be lost, if anything, if they were analysed instead as a type of quantifier-phrase, as on Russell’s Theory of Definite Descriptions? and (2) Granting—at least for the sake of argument—that Hume’s Principle may be used as a means of implicitly (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  30.  40
    Quine’s proxy-function argument for the indeterminacy of reference and frege’s caesar problem.Dirk Greimann - 2020 - Manuscrito 44 (3):70-108.
    In his logical foundation of arithmetic, Frege faced the problem that the semantic interpretation of his system does not determine the reference of the abstract terms completely. The contextual definition of number, for instance, does not decide whether the number 5 is identical to Julius Caesar. In a late writing, Quine claimed that the indeterminacy of reference established by Frege’s Caesar problem is a special case of the indeterminacy established by his proxy-function argument. The present paper aims to show that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31. Towards completeness: Husserl on theories of manifolds 1890–1901.Mirja Helena Hartimo - 2007 - Synthese 156 (2):281-310.
    Husserl’s notion of definiteness, i.e., completeness is crucial to understanding Husserl’s view of logic, and consequently several related philosophical views, such as his argument against psychologism, his notion of ideality, and his view of formal ontology. Initially Husserl developed the notion of definiteness to clarify Hermann Hankel’s ‘principle of permanence’. One of the first attempts at formulating definiteness can be found in the Philosophy of Arithmetic, where definiteness serves the purpose of the modern notion of ‘soundness’ and leads Husserl to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  32. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  33.  87
    Internal Categoricity, Truth and Determinacy.Martin Fischer & Matteo Zicchetti - 2023 - Journal of Philosophical Logic 52 (5):1295-1325.
    This paper focuses on the categoricity of arithmetic and determinacy of arithmetical truth. Several ‘internalcategoricity results have been discussed in the recent literature. Against the background of the philosophical position called internalism, we propose and investigate truth-theoretic versions of internal categoricity based on a primitive truth predicate. We argue for the compatibility of a primitive truth predicate with internalism and provide a novel argument for (and proof of) a truth-theoretic version of internal (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  16
    What structuralism could not be.Stephen Ferguson - 1998 - Dissertation, St. Andrews
    Frege's arithmetical-platonism is glossed as the first step in developing the thesis; however, it remains silent on the subject of structures in mathematics: the obvious examples being groups and rings, lattices and topologies. The structuralist objects to this silence, also questioning the sufficiency of Fregean platonism is answering a number of problems: e.g. Benacerraf's Twin Puzzles of Epistemic and Referential Access. The development of structuralism as a philosophical position, based on the slogan 'All mathematics is structural' collapses: there is no (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  35. Categorical Quantification.Constantin C. Brîncuş - 2024 - Bulletin of Symbolic Logic 30 (2):pp. 227-252.
    Due to Gӧdel’s incompleteness results, the categoricity of a sufficiently rich mathematical theory and the semantic completeness of its underlying logic are two mutually exclusive ideals. For first- and second-order logics we obtain one of them with the cost of losing the other. In addition, in both these logics the rules of deduction for their quantifiers are non-categorical. In this paper I examine two recent arguments –Warren (2020), Murzi and Topey (2021)– for the idea that the natural deduction rules (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  37. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to (...)
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  38. Lon Fuller's Legal Structuralism.William Conklin - 2012 - In Bjarne Melkevik (ed.), Standing Tall Hommages a Csaba Varga. Budapest: Pazmany Press. pp. 97-121.
    Anglo-American general jurisprudence remains preoccupied with the relationship of legality to morality. This has especially been so in the re-reading of Lon Fuller’s theory of an implied morality in any law. More often than not, Fuller has been said to distinguish between the identity of a discrete rule and something called ‘morality’. In this reading of Fuller, however, insufficient attention to what is signified by ‘morality’. Such an implied morality has been understood in terms of deontological duties, the Good life, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  39. The inexpressibility of validity.Julien Murzi - 2014 - Analysis 74 (1):65-81.
    Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), no (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  40.  86
    Neo-Fregean Foundations for Real Analysis: Some Reflections on Frege's Constraint.Crispin Wright - 2000 - Notre Dame Journal of Formal Logic 41 (4):317--334.
    We now know of a number of ways of developing real analysis on a basis of abstraction principles and second-order logic. One, outlined by Shapiro in his contribution to this volume, mimics Dedekind in identifying the reals with cuts in the series of rationals under their natural order. The result is an essentially structuralist conception of the reals. An earlier approach, developed by Hale in his "Reals byion" program differs by placing additional emphasis upon what I here term Frege's Constraint, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  41.  73
    A Structural Account of Mathematics.Charles S. Chihara - 2003 - Oxford and New York: Oxford University Press UK.
    Charles Chihara's new book develops and defends a structural view of the nature of mathematics, and uses it to explain a number of striking features of mathematics that have puzzled philosophers for centuries. The view is used to show that, in order to understand how mathematical systems are applied in science and everyday life, it is not necessary to assume that its theorems either presuppose mathematical objects or are even true. Chihara builds upon his previous work, in which he presented (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  42. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  33
    End Extensions of Models of Weak Arithmetic Theories.Costas Dimitracopoulos & Vasileios S. Paschalis - 2016 - Notre Dame Journal of Formal Logic 57 (2):181-193.
    We give alternative proofs of results due to Paris and Wilkie concerning the existence of end extensions of countable models of $B\Sigma_{1}$, that is, the theory of $\Sigma_{1}$ collection.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Goedel's theorem and models of the brain: possible hemispheric basis for Kant's psychological ideas.U. Fidelman - 1999 - Journal of Mind and Behavior 20 (1):43-56.
    Penrose proved that a computational or formalizable theory of the brainís cognitive functioning is impossible, but suggested that a physical non-computational and non-formalizable one may be viable. Arguments as to why Penroseís program is unrealizable are presented. The main argument is that a non-formalizable theory should be verbal. However, verbal paradoxes based on Cantorís diagonal processes show the impossibility of a consistent verbal theory of the brain comprising its arithmetical cognition. It is suggested that comprehensive theories of the human brain (...)
     
    Export citation  
     
    Bookmark  
  45.  9
    Putnam's Model‐Theoretic Arguments.Barry Taylor - 2006 - In Models, truth, and realism. New York: Oxford University Press.
    This chapter sets out the relevant core of Putnam’s case. Section 3.1 extracts three arguments from Putnam’s writings: the Arguments from Cardinality, Completeness, and Permutation. Of these, section 3.2 argues that only the second is of direct relevance. Section 3.3 examines attempts to frame constraints based on causal and psycho-behavioural reductions of reference. Section 3.4 investigates the Translational Reference Constraint, a constraint on reference which does not rely on a reduction of reference but makes essential use of translation to (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46.  63
    A modal sequent calculus for a fragment of arithmetic.G. Sambin & S. Valentini - 1980 - Studia Logica 39 (2-3):245-256.
    Global properties of canonical derivability predicates in Peano Arithmetic) are studied here by means of a suitable propositional modal logic GL. A whole book [1] has appeared on GL and we refer to it for more information and a bibliography on GL. Here we propose a sequent calculus for GL and, by exhibiting a good proof procedure, prove that such calculus admits the elimination of cuts. Most of standard results on GL are then easy consequences: completeness, decidability, finite model (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  47. The development of arithmetic in Frege's Grundgesetze der Arithmetik.Richard Heck - 1993 - Journal of Symbolic Logic 58 (2):579-601.
    Frege's development of the theory of arithmetic in his Grundgesetze der Arithmetik has long been ignored, since the formal theory of the Grundgesetze is inconsistent. His derivations of the axioms of arithmetic from what is known as Hume's Principle do not, however, depend upon that axiom of the system--Axiom V--which is responsible for the inconsistency. On the contrary, Frege's proofs constitute a derivation of axioms for arithmetic from Hume's Principle, in (axiomatic) second-order logic. Moreover, though Frege does prove each of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   63 citations  
  48. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  29
    Automorphism Groups of Arithmetically Saturated Models.Ermek S. Nurkhaidarov - 2006 - Journal of Symbolic Logic 71 (1):203 - 216.
    In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that ifMis a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2be countable arithmetically saturated (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  50.  27
    Carnapian Modal and Epistemic Logic and Arithmetic with Descriptions.Jan Heylen - 2009 - Dissertation, Ku Leuven
    In the first chapter I have introduced Carnapian intensional logic against the background of Frege's and Quine's puzzles. The main body of the dissertation consists of two parts. In the first part I discussed Carnapian modal logic and arithmetic with descriptions. In the second chapter, I have described three Carnapian theories, CCL, CFL, and CNL. All three theories have three things in common. First, they are formulated in languages containing description terms. Second, they contain a system of modal logic. Third, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 963