Abstract
This paper proposes a model for implementation of intrinsic natural language sentence meaning in a physical language understanding system, where 'intrinsic' is understood as 'independent of meaning ascription by system-external observers'. The proposal is that intrinsic meaning can be implemented as a point attractor in the state space of a nonlinear dynamical system with feedback which is generated by temporally sequenced inputs. It is motivated by John Searle's well known (Behavioral and Brain Sciences, 3: 417–57, 1980) critique of the then-standard and currently still influential computational theory of mind (CTM), the essence of which was that CTM representations lack intrinsic meaning because that meaning is dependent on ascription by an observer_._ The proposed dynamical model comprises a collection of interacting artificial neural networks, and constitutes a radical simplification of the principle of compositional phrase structure which is at the heart of the current standard view of sentence semantics because it is computationally interpretable as a finite state machine.