Abstract
Aquinas, Ockham, and Burdan all claim that a person can be numerically identical over time, despite changes in size, shape, and color. How can we reconcile this with the Indiscernibility of Identicals, the principle that numerical identity implies indiscernibility across time? Almost all contemporary metaphysicians regard the Indiscernibility of Identicals as axiomatic. But I will argue that Aquinas, Ockham, and Burdan would reject it, perhaps in favor of a principle restricted to indiscernibility at a time.