Abstract
The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's cognitive plausibility. We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition model can aim to be cognitively plausible in multiple ways. We discuss these cognitive plausibility checkpoints generally and then apply them to a case study in word segmentation, investigating a promising Bayesian segmentation strategy. We incorporate cognitive plausibility by using an age-appropriate unit of perceptual representation, evaluating the model output in terms of its utility, and incorporating cognitive constraints into the inference process. Our more cognitively plausible model shows a beneficial effect of cognitive constraints on segmentation performance. One interpretation of this effect is as a synergy between the naive theories of language structure that infants may have and the cognitive constraints that limit the fidelity of their inference processes, where less accurate inference approximations are better when the underlying assumptions about how words are generated are less accurate. More generally, these results highlight the utility of incorporating cognitive plausibility more fully into computational models of language acquisition