Categorical Proof-theoretic Semantics

Studia Logica:1-38 (forthcoming)
  Copy   BIBTEX

Abstract

In proof-theoretic semantics, model-theoretic validity is replaced by proof-theoretic validity. Validity of formulae is defined inductively from a base giving the validity of atoms using inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the proof rules without any requirement for formal models. Establishing this for propositional intuitionistic logic raises some technical and conceptual issues. We relate Sandqvist’s (complete) base-extension semantics of intuitionistic propositional logic to categorical proof theory in presheaves, reconstructing categorically the soundness and completeness arguments, thereby demonstrating the naturality of Sandqvist’s constructions. This naturality includes Sandqvist’s treatment of disjunction that is based on its second-order or elimination-rule presentation. These constructions embody not just validity, but certain forms of objects of justifications. This analysis is taken a step further by showing that from the perspective of validity, Sandqvist’s semantics can also be viewed as the natural disjunction in a category of sheaves.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,561

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2024-05-04

Downloads
17 (#1,129,509)

6 months
14 (#210,560)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

David Pym
University College London

Citations of this work

No citations found.

Add more citations