Abstract
The existence and properties of the chloroplast genome were established by a combination of genetic methods which identified chloroplast mutations and placed them into a linear sequence or map; and by chemical methods, CsCl density gradient ultracentrifugation and base analysis, which identified non‐nuclear DNA extracted from isolated chloroplasts. These studies, carried out in the 1950s and 1960s, primarily with Chlamydomonas, as well as parallel studies of mitochondrial DNA with yeast and Neurospora, laid the framework for distinguishing organelle and nuclear genomes. On this basis, the coding and regulatory functions of three genomes – nuclear, chloroplast, and mitochondrial – are being addressed in modern plant molecular biology.