Abstract
Specker sequences are constructive, increasing, bounded sequences of rationals that do not converge to any constructive real. A sequence is said to be a strong Specker sequence if it is Specker and eventually bounded away from every constructive real. Within Bishop's constructive mathematics we investigate non-decreasing, bounded sequences of rationals that eventually avoid sets that are unions of sequences of intervals with rational endpoints. This yields surprisingly straightforward proofs of certain basic results fromconstructive mathematics. Within Russian constructivism, we show how to use this general method to generate Specker sequences. Furthermore, we show that any nonvoid subset of the constructive reals that has no isolated points contains a strictly increasing sequence that is eventually bounded away from every constructive real. If every neighborhood of every point in the subset contains a rational number different from that point, the subset contains a strong Specker sequence