Abstract
A real number x is computable iff it is the limit of an effectively converging computable sequence of rational numbers, and x is left computable iff it is the supremum of a computable sequence of rational numbers. By applying the operations “sup” and “inf” alternately n times to computable sequences of rational numbers we introduce a non-collapsing hierarchy {Σn, Πn, Δn : n ∈ ℕ} of real numbers. We characterize the classes Σ2, Π2 and Δ2 in various ways and give several interesting examples